
UNIVERSIDAD DE LOS ANDES
FACULTAD DE INGENIERÍA

DOCTORADO EN CIENCIAS APLICADAS
MÉRIDA – VENEZUELA

ESTRATEGIAS BASADAS EN LA TÉCNICA DE DATOS
ENLAZADOS PARA LA GENERACIÓN DE CONOCIMIENTO EN

AMBIENTES INTELIGENTES

MSc. Ricardo José Dos Santos Guillén

Tutor: Dr. Jose Aguilar
Universidad de Los Andes

Mérida – Venezuela

Julio 2025

Resumen

Este trabajo doctoral se adentra en la generación y explotación de conocimiento dentro de Ambientes
Inteligentes, abordando la inherente falta de estructura semántica en la Web. Para ello, se propone un
enfoque central basado en el paradigma de Datos Enlazados, que permite interconectar y mejorar la
comprensión del significado de los datos en Internet, tanto para humanos como para máquinas,
mediante el uso de estándares y enlaces entre recursos. La explotación inteligente de este conocimiento
en un Ambiente Inteligente se logra integrando mecanismos avanzados como el Aprendizaje
Automático para construir modelos predictivos o de clasificación, incluyendo técnicas como los
Autocodificadores Variacionales para la generación de datos sintéticos y Redes Neuronales
Convolucionales para la extracción de características. Además, se incorpora el Meta-Aprendizaje para
permitir que los sistemas de Aprendizaje Automático "aprendan a aprender" de experiencias previas,
adaptando técnicas y gestionando metadatos como Meta-Dataset, Meta-Características, Meta-Técnicas
y Meta-Modelos. Crucialmente, la Lógica Dialéctica se emplea para resolver situaciones de
contradicción o ambigüedad, gestionando estados como la vaguedad, declaraciones contingentes sobre
el futuro, fallos de presuposición, discurso ficticio y razonamiento contrafáctico. La investigación
presenta arquitecturas computacionales innovadoras: un Sistema de Recomendación Híbrido que
combina lógica descriptiva y dialéctica con Datos Enlazados para gestionar información inconsistente y
explotar la semántica web, una extensión del middleware MiSCi con una capa de Datos Enlazados para
el enriquecimiento y la explotación semántica en tiempo real en ciudades inteligentes, y un Sistema de
Generación Automática de Ontologías que crea y enriquece ontologías emergentes de forma autónoma
utilizando Datos Enlazados. Finalmente, la arquitectura de Meta-Aprendizaje fue extendida para la
creación automática de modelos de conocimiento apoyado en ciclos autónomos para tareas de análisis
de datos, facilitando su adaptación rápida a nuevos escenarios en contextos como la automatización de
cadenas de producción agroindustrial, mediante un ciclo autónomo que supervisa la ejecución de sus
módulos a través de tareas de Observación, Análisis y Decisión.

Palabras Claves: Datos Enlazados, Meta-Aprendizaje, Lógica Dialéctica, Aprendizaje Automático,
Ambientes Inteligentes

Índice General
1 Introducción... .9

1.1 Planteamiento del Problema... .9
1.2 Objetivos.. .10

1.2.1 Objetivo General... .10
1.2.2 Objetivos Específicos.. .11

1.3 Antecedentes..11
1.4 Organización de la Tesis..14

2 Marco Teórico.. .15
2.1 Datos Enlazados... .15

A.1.1 Principios de los Datos Enlazados.. .15
A.1.2 Modelado de los Datos Enlazados.. .16

2.2 Aprendizaje Automático... .20
2.2.1 Tipos de aprendizaje...20
2.2.2 Técnicas avanzadas de redes neuronales...21

2.3 Meta-Aprendizaje... .23
2.3.1 Meta-Dataset..24
2.3.2 Meta-Características.. .24
2.3.3 Meta-Técnicas... .24
2.3.4 Meta-Modelos... .25

2.4 Lógica Dialéctica...25
3 Arquitecturas de Gestión de Conocimiento basado en Datos Enlazados.. .27

3.1 Ampliación del MiSCi extendido con Datos Enlazados.. .27
3.1.1 Especificación de los agentes de Datos Enlazados.. .30
3.1.2 Experimentación... .33

3.2 Generación Automático de Ontologías basado en Datos Enlazados.. .35
3.2.1 Componentes de la capa Knowledge Base Manager.. .36
3.2.2 Componentes de la capa Knowledge Generator Manager... .36
3.2.3 Componentes de la capa Web Services Manager...37
3.2.4 Comportamiento de AOGS...38
3.2.5 Experimentación... .39

4 Recomendador Híbrido Basado en Lógica Descriptiva/Dialéctica y Datos Enlazados....................43
4.1 Arquitectura del HRS... .43

4.1.1 Componentes del Grupo Reasoning Engines.. .44
4.1.2 Componentes del Grupo Manager.. .44

4.2 Funcionamiento del HRS... .46
4.2.1 Identificación de URI utilizando Datos Enlazados... .46
4.2.2 Extracción de Conocimiento utilizando Datos Enlazados...47
4.2.3 Verificación y Filtrado de Recomendaciones utilizando Datos Enlazados.......................48
4.2.4 Extracción de Contenidos Relacionados a las Recomendaciones utilizando Datos
Enlazados..49

4.3 Experimentación..49
4.3.1 Identificación de URIs mediante Datos Enlazados..51
4.3.2 Extracción de conocimientos mediante Datos Enlazados.. .52
4.3.3 Verificación y filtrado de recomendaciones mediante Datos Enlazados.......................... .54

4.3.4 Extracción de contenidos relacionados con las recomendaciones mediante Datos
Enlazados..56
4.3.5 Análisis y Validación del Experimento...57

4.4 Aplicaciones... .58
4.4.1 Fenómenos dialécticos en las competencias (Knowledge Model).................................... .58
4.4.2 Otros Modelos de Conocimiento..67
4.4.3 Análisis General...69

5 Arquitectura de Meta-Aprendizaje para Modelos de Aprendizaje Automático basado en Datos
Enlazados.. .70

5.1 Arquitectura.. .70
5.1.1 Módulos de la arquitectura... .71

5.2 Ampliación de la Arquitectura...72
5.2.1 Generación de Características... .77
5.2.2 Generación de Datos Artificiales...80

5.3 Casos de Estudio.. .85
5.3.1 Caso 1: Meta-Algoritmo Autónomo.. .85
5.3.2 Caso 2: Generación de Características.. .88
5.3.3 Caso 3: Generación de Datos Artificiales.. .89

5.4 Entorno de Meta-Aprendizaje ACODAT... .90
5.4.1 Sistema Arquitectónico ACODAT... .90
5.4.2 Caso de estudio... .92

6 Conclusiones y Trabajos Futuros..94
6.1 Conclusiones.. .94
6.2 Trabajos Futuros... .97

7 Referencias Bibliográficas... .98
8 Anexos... .103

8.1 Anexo 2.A: Tecnologías de los Datos Enlazados... .103
8.2 Anexo 3.A: Middleware MiSCi para Ciudades Inteligentes extendido con Datos Enlazados107
8.3 Anexo 3.B: Automated Ontology Generator System based on Linked data.......................... .117
8.4 Anexo 3.C: Arquitectura para la Creación y Enriquecimiento Automático de Ontologías a
partir de Datos Enlazado.. .127
8.5 Anexo 4.A: A hybrid recommender system based on description/dialetheic logic and linked
data 138
8.6 Anexo 4.B: Evaluation of digital competence profiles using dialetheic logic....................... .160
8.7 Anexo 4.C: Análisis de las contradicciones en las competencias profesionales en los textos
digitales usando Lógica Dialéctica..189
8.8 Anexo 5.A: A meta-learning architecture based on linked data... .203
8.9 Anexo 5.B: An Autonomous Meta-Learning Architecture for Transfer Learning based on
Linked Data.. .213
8.10 Anexo 5.C: An Explainable Feature Generation Approach for Classification Models Using
CNNs.. .214
8.11 Anexo 5.D: A synthetic Data Generator for Smart Grids based on the Variational-Autoencoder
Technique and Linked Data Paradigm... .215
8.12 Anexo 5.E: A synthetic data generation system based on the variational-autoencoder technique
and the linked data paradigm...222
8.13 Anexo 5.F: Meta-learning Architecture for ACODAT in the Context of Agro-Industrial
Production Chains of MSMEs...244

Índice de Figuras
Figura 2.1: Aprendizajes Automáticos y sus elementos...20
Figura 2.2: Los algoritmos de Aprendizajes Automáticos basados en datos.. .21
Figura 2.3: Arquitectura básica de un VAE..22
Figura 2.4: Arquitectura básica de una CNN.. .23
Figura 3.1: Extensión del middleware MiSCi con Datos Enlazados.. .28
Figura 3.2: Proceso de enriquecimiento semántico de los datos..29
Figura 3.3: Proceso de explotación de los datos... .29
Figura 3.4: Diagrama de actividad de ILDA..30
Figura 3.5: Diagrama de actividad del caso de uso de ELDA.. .31
Figura 3.6: Diagrama de actividad del caso de uso de LDIA... .31
Figura 3.7: Diagrama de actividad del caso de uso de LDKA...32
Figura 3.8: Diagrama de actividad del KA... .34
Figura 3.9: Diagrama de secuencia para explotar datos...35
Figura 3.10: Diagrama de componentes de nuestra arquitectura basada en MEDAWEDE................... .36
Figura 3.11: Interfaz de generación..40
Figura 3.12: Ponderaciones entre los listados de coincidencias (azul) y los términos de búsqueda (verde
oscuro) y sus sinónimos (verde claro)..41
Figura 3.13: Vinculación de conceptos ontológicos con fuentes externas de Datos Enlazados............. .42
Figura 3.14: Ontología generada y publicada en formato RDF/XML.. .42
Figura 4.1: Diagrama de componentes de nuestro HRS... .44
Figura 4.2: Caso de estudio del HRS.. .50
Figura 4.3: Consulta para encontrar una ontología para los términos o conceptos: disease................... .52
Figura 4.4: Consulta para extraer los síntomas detectados en el user_A.. .53
Figura 4.5: Consulta que genera la lista de enfermedades y sus síntomas...53
Figura 4.6: Información sobre enfermedades y sus síntomas convertida para el motor de Lógica
Dialéctica.. .54
Figura 4.7: Conjeturas para verificar y filtrar los datos.. .54
Figura 4.8: Comparación del resultado de dos conjeturas con respecto a los datos............................... .55
Figura 4.9: Consulta para extraer datos asociados a Zika_fever... .56
Figura 5.1: Arquitectura conceptual del Meta-Aprendizaje.. .71
Figura 5.2: Arquitectura de Meta-Aprendizaje ampliada (nuevos componentes resaltados en recuadros
rojos)... .73
Figura 5.3: Meta-algoritmo autónomo para MLM, mostrando la invocación a los procesos KML (Rojo)
y MKL (Verde).. .75
Figura 5.4: Arquitectura EAFECNN..77
Figura 5.5: Arquitectura RESNET-50... .79
Figura 5.6: Arquitectura de generación sintética de datos.. .81
Figura 5.7: Ampliación del SDGS.. .81
Figura 5.8: Grupos de pasos del meta-algoritmo autónomo... .85
Figura 5.9: Trazabilidad de la búsqueda de un modelo para el experimento 1....................................... .87
Figura 5.10: Resultado del experimento 1 utilizando DBScan... .88
Figura 5.11: Transformaciones de la primera instancia del dataset mediante TINTOlib.........................89
Figura 5.12: Características generadas por cada imagen pasada por el modelo CNN-FG......................89
Figura 5.13: Generación de datos sintéticos... .90

Figura 5.14: Nueva arquitectura MTL ACODAT...91

Índice de Tablas
Tabla 3.1: Servicios y tareas de LDKA..33
Tabla 3.2: Macro-algoritmo de la gestión del conocimiento..38
Tabla 3.3: Macro-algoritmo de generación de conocimiento...39
Tabla 4.1: Macro-algoritmo de nuestro HRS.. .46
Tabla 4.2: Macro-algoritmo de identificación de URIs mediante Datos Enlazados............................... .47
Tabla 4.3: Macro-algoritmo de extracción de conocimiento mediante Datos Enlazados....................... .48
Tabla 4.4: Macro-algoritmo de verificación y filtrado de recomendaciones mediante Datos Enlazados.
..48
Tabla 4.5: Macro-algoritmo de extracción de contenidos relacionados con las recomendaciones
mediante Datos Enlazados.. .49
Tabla 4.6: Base de conocimientos HRS sobre los ToC... .51
Tabla 4.7: Nuevos términos o conceptos identificados y relacionados con sus URIs mediante Datos
Enlazados.. .52
Tabla 4.8: Enfermedades con sus síntomas extraídos de Datos Enlazados..53
Tabla 4.9: Recomendación gracias al motor lógico dialéctico...55
Tabla 4.10: Extracción de Datos Enlazados sobre la Fiebre Zika..57
Tabla 4.11: Patrones lingüísticos de vaguedad...59
Tabla 4.12: Axiomas de vaguedad.. .60
Tabla 4.13: Casos de declaraciones contingentes sobre el futuro en términos de perfiles debido a la
contradicción de los niveles cognitivos..60
Tabla 4.14: Axiomas de declaraciones contingentes sobre el futuro.. .62
Tabla 4.15: Casos de discurso ficticio en términos de perfiles por su significado y ubicación...............63
Tabla 4.16: Axiomas de los términos ficticios.. .64
Tabla 4.17: Casos de fallo de presuposición debido a la contradicción de la interpretación de los
expertos de los términos de los perfiles.. .64
Tabla 4.18: Axiomas de fallo de presuposición.. .65
Tabla 4.19: Casos de razonamiento contrafáctico debido a la pertenencia de un término a un dominio
según una medida de similitud.. .66
Tabla 4.20: Axiomas de razonamiento contrafáctico.. .67
Tabla 4.21: Axiomas caso 1.. .68
Tabla 5.1: Macro-algoritmo del módulo MT que transforma el conjunto de datos para CNN............... .78
Tabla 5.2: Macro-algoritmo del módulo CNN-FG para generar las características............................... .79
Tabla 5.3: Macro-algoritmo del módulo CNN-EA para analizar el modelo... .80
Tabla 5.4: Macro-algoritmo del módulo DSA.. .82
Tabla 5.5: Macro-algoritmo del proceso multisources para buscar muestras de datos........................... .82
Tabla 5.6: Macro-algoritmo del proceso multidatasets para fusionar muestras de datos.........................83
Tabla 5.7: Macro-algoritmo del módulo DP para optimizar la muestra de datos................................... .83
Tabla 5.8: Macro-algoritmo de FE para mejorar la muestra de datos... .84
Tabla 5.9: Macro-algoritmo de SDG para la generación de datos sintéticos.. .84
Tabla 5.10: Modelos añadidos en la tabla de Meta-Modelos de la arquitectura..................................... .87
Tabla 5.11: Resumen de las tareas del ciclo autónomo supervisado..93
Tabla 5.12: Resultado de los mejores modelos construidos para cada tarea del ciclo autónomo
supervisado...93

1 Introducción

1.1 Planteamiento del Problema

Los nuevos avances en las tecnologías de la información y la evolución de la World Wide Web, han
transformado a la actual Web en un gran repositorio de documentos de distintos tipos, como imágenes,
texto, entre otros. La Web presenta un gran problema en su uso como repositorio de información, por la
falta de una estructura semántica que permita interpretar el contenido de la mayoría de la información
contenida en la Web. En ese sentido, uno de los primeros esfuerzos que se ha hecho para explotar el
gran contenido de información en ella, es su modelado usando ontologías, desarrollándose toda un área
dedicada a estos temas conocida como la Web Semántica [1, 2]. Una extensión reciente de dicha área es
el paradigma llamado Datos Enlazados o Vinculados (en inglés, Linked Data), el cual permite vincular
un conjunto de datos publicados en la Internet (en este caso, conceptos o cosas) usando los mismos
mecanismos de las páginas web, como las URL (en inglés Uniform Resource Locator) [3]. Los Datos
Enlazados es sinónimo de datos semánticamente interconectados, lo que permite la interoperabilidad
entre ellos, a pesar de que sean heterogéneos y estén distribuidos eventualmente en diferentes
repositorios. En [4] se refieren a los Datos Enlazados como “los datos publicados en la web, de manera
tal que sea legible por las máquinas. Por otro lado, sus significados explícitamente están vinculadas a
otros conjuntos de datos”.

En particular, nosotros estamos interesados en usar el paradigma de Datos Enlazados para manejar y
explotar el conocimiento generado en un Ambiente Inteligente (AmI), sabiendo que un AmI es un
“paradigma en el cual las personas están potenciadas o fortalecidas por el uso de entornos digitales que
son conscientes de su presencia y su contexto, que son sensibles, adaptativos, y responden a sus
necesidades, hábitos, gestos y emociones” [5, 6]. A su vez, en [7] lo definen como “los mecanismos que
gobiernan los componentes de un entorno, siendo sensible a las demandas del usuario, aprendiendo o
conociendo sus preferencias, para poder reaccionar de forma personalizada y consciente del contexto”.
Sin embargo, la explotación inteligente del conocimiento en un AmI, implica extraer, transformar,
filtrar y relacionar datos e información desde diferentes fuentes. En ese sentido, poder usar el método
de publicación e interconexión de datos como lo prevé el paradigma de Datos Enlazados, permite el
enriquecimiento cognitivo de un AmI con diferentes fuentes de información.

Ahora bien, los Datos Enlazados requieren de otros mecanismos para la generación de conocimiento
desde diversas fuentes de datos e información. En específico, requieren de técnicas provenientes de las
áreas del Meta-Aprendizaje, Aprendizaje Automático y Lógica Dialéctica, entre otras, para que
conjuntamente se genere conocimiento para un AmI desde sus fuentes de información. Para
automatizar las tareas de extracción y explotación de conocimiento, es de suma importancia las
técnicas que provee el Aprendizaje Automático, potenciado con el Meta-Aprendizaje. El Aprendizaje
Automático se dedica a desarrollar algoritmos y sistemas que permiten crear modelos de conocimiento
(de predicción, clasificación, diagnóstico, entre otros) a través de los datos o experiencias [8], los

cuales luego puedan ser usados para responder a las distintas necesidades que tenga el AmI. El Meta-
Aprendizaje permite aprender a aprender, permitiendo a los diferentes procesos del Aprendizaje
Automático a adecuar sus técnicas de aprendizaje basado en el conocimiento previo y en los
requerimientos de los problemas a resolver [9]. Por último, la Lógica Dialéctica posee la capacidad de
resolver situaciones de contradicción o ambigüedad, así mismo, también sirve para la toma de
decisiones en contextos donde las presuposiciones fallan (por ejemplo, en tareas de diagnóstico o
detección de fallas), con contingencias sobre el futuro (clave para el manejo de datos históricos, que
indican que algo fue verdad y falso en el pasado), manejar situaciones contrafácticas que describen algo
que podría haber ocurrido de la forma "Si A no hubiera ocurrido, C no habría ocurrido" (eso ayuda a los
sistemas a aprender de los errores para hacer los correctivos en un futuro), o con un discurso ficticio
(tomar decisiones bajo supuestos imaginarios) [10].

En particular, se hace necesario crear una Arquitectura Computacional que posea las capacidades de
integrar los mecanismos para la generación de conocimiento con los Datos Enlazados, entendiendo a
una Arquitectura Computacional como “la organización fundamental de un sistema definido por sus
componentes, sus relaciones entre sí y con el medio ambiente, y los principios que guían su diseño y
evolución” [11]. Así, esta tesis se enfoca en definir estrategias basadas en Datos Enlazados, en el
contexto específico de los AmI, integrando mecanismos de Aprendizaje Automático, Meta-Aprendizaje
y Lógica Dialéctica, para responder a las siguientes incógnitas:

 ¿Cómo se puede explotar el método de publicación de datos estructurados de los Datos
Enlazados, para generar conocimiento útil en un AmI?

 ¿Cómo se integran los conceptos/paradigmas de Aprendizaje Automático, Meta-Aprendizaje y
Lógica Dialéctica con Datos Enlazados, para la extracción autonómica y explotación del
conocimiento en un AmI?

 ¿Cómo las herramientas y técnicas existentes alrededor de los conceptos/paradigmas de
Aprendizaje Automático (por ejemplo, Tensorflow, Scikit-Learn, Keras), Lógica Dialéctica
(por ejemplo, JGXYZ-RM3 con los razonadores Vampire y Eprover) y Datos Enlazados (por
ejemplo, DBpedia, OpenLink Virtuoso), se pueden integrar para la gestión del conocimiento en
un AmI?

 ¿Cómo se garantiza la interoperabilidad, la integración, la escalabilidad y la flexibilidad, de un
entorno computacional de generación de conocimiento basado en Datos Enlazados para un
AmI?

1.2 Objetivos

1.2.1 Objetivo General

Definir una arquitectura computacional que permita la generación de conocimiento usando la técnica
de Datos Enlazados para Ambientes Inteligentes

1.2.2 Objetivos Específicos

 Estudiar aspectos teóricos y prácticos, y en general, el estado de arte, relacionados con los
Datos Enlazados, Inteligencia Ambiental, Lógica Dialéctica, Aprendizaje Automático y
Meta-Aprendizaje.

 Caracterizar los mecanismos de extracción y procesamiento de información en un AmI,
desde la perspectiva de los Datos Enlazados.

 Especificar una arquitectura computacional que integre los diferentes mecanismos de
Lógica Dialéctica, Aprendizaje Automático y Meta-Aprendizaje, requeridos por las
estrategias basadas en Datos Enlazados, para la generación de conocimiento en un AmI.

 Desarrollar un conjunto de servicios de generación de conocimiento para un AmI usando la
arquitectura computacional basada en Datos Enlazados, integrada con Lógica Dialéctica,
Aprendizaje Automático y Meta-Aprendizaje.

 Elaborar un prototipo de la arquitectura computacional especificada, y realizar casos de
estudio en un AmI específico.

1.3 Antecedentes

La investigación y revisión de los antecedentes, se enfocaron en los siguientes ámbitos: el uso de los
Datos Enlazados para la generación de conocimiento, el uso de los Datos Enlazados en AmI, y la
integración de los Datos Enlazados con Lógica Dialéctica, Aprendizaje Automático y Meta-
Aprendizaje. A continuación, presentamos los trabajos más resaltantes recientes en cada uno de esos
ámbitos.

En relación con el uso de los Datos Enlazados para la generación de conocimiento, tenemos los
siguientes trabajos. En la revisión sistemática realizada en [12], categorizan y analizan una amplia
gama de herramientas basadas en Datos Enlazados, específicamente, en tareas de: i. Extracción de
Conocimiento: Transforman texto no estructurado o semiestructurado en formatos estructurados
mediante el reconocimiento y la vinculación de entidades (Named Entity Recognition and Linking) y el
enriquecimiento semántico; ii. Visualización y Exploración de Grafos de Conocimiento (Knowledge
Graphs, KGs): Permite a los usuarios comprender las relaciones intrincadas a través de paradigmas de
interacción como vistas tabulares (tripletes), nodo-enlace (grafos) y composición visual de consultas
(consultas SPARQL1); iii. Reducción de Complejidad: métodos que evitan la sobrecarga de
información, empleando estrategias como la visualización navegacional (centrada en un objeto y su
entorno inmediato), la visualización incremental (permitiendo a los usuarios controlar un espacio de
trabajo para añadir o eliminar vistas de objetos de datos dinámicamente), y la visualización resumida

1 SPARQL (Query Language for RDF): https://www.w3.org/TR/sparql11-query/

(generando resúmenes de grafos para proporcionar una visión general concisa de un conjunto de datos
grande).

Otro trabajo interesante es presentado Pham-Hang y otros [13], el cual describe el desarrollo de un
novedoso sistema para compartir información sobre seguridad basado en Datos Enlazados. El sistema
mejora el intercambio y la reutilización de datos pasados usando tres módulos principales. El Módulo
de Ontología, que formaliza el conocimiento de los accidentes utilizando la metodología Linked Open
Terms (LOT) y lenguajes como OWL2, RDF3 y RDFS4 para estructurar la información de manera
consistente. El Módulo de Procesamiento RDF, que se encarga de la conversión automática de datos
existentes y nuevos a formato RDF, empleando librerías como RDFLib5 y KGLAB6 para manejar datos
como grafos y tripletas (sujeto, predicado, objeto), que luego se almacenan en un RDF store (almacén
de triples o almacén RDF,). Finalmente, el Módulo de Consulta permite la recuperación de información
utilizando el protocolo SPARQL, el estándar para consultar Datos Enlazados abiertos y conjuntos de
datos RDF (triplestores). Además, usand KGLAB para visualizaciones basadas en grafos que muestran
las relaciones entre los elementos de los datos. De manera similar en [14], Thalahth y otros generan
RDFs enriquecidos con información proveniente de Wikidata7. Para ello, previamente concilian los
conjuntos de datos (por ejemplo, nombres de ciudades y países) con URIs (Uniform Resource
Identifier) de Wikidata.

En cuanto al uso de los Datos Enlazados en AmI, un primer trabajo es [15], donde se presenta una
revisión sistemática de técnicas avanzadas de inteligencia vestible multimodal aplicadas al cuidado de
la demencia. Este enfoque permite un monitoreo no intrusivo del contexto mediante el uso de
dispositivos como lentes inteligentes, pulseras inteligentes, registradores tipo clip y teléfonos
inteligentes. Una de las tecnologías claves es el empleo de repositorios de datos semánticos. Estos
repositorios permiten la búsqueda y el procesamiento de Datos Enlazados en el contexto de vida
saludables, para reusar los recursos disponibles en internet. La integración de los Datos Enlazados a
través de repositorios semánticos y endpoints SPARQL (como CardioSHARE8 y Bio2RDF9) permite
acceder y consultar una vasta red de conocimiento distribuido y heterogéneo. Esta capacidad es
fundamental para proporcionar servicios de salud personalizados e inteligentes a personas que viven
con demencia.

En el trabajo [16] Favarato y otros presentan un estudio sobre el uso de los Datos Enlazados como
mecanismos de gestión de los datos en un AmI, permitiendo combinar una vasta cantidad de
información de diversas fuentes para obtener una comprensión integral de cómo la contaminación del
aire y las condiciones de la vivienda contribuyen a las hospitalizaciones por infecciones del tracto

2 OWL (Web Ontology Language): https://www.w3.org/OWL/
3 RDF (Resource Description Framework): https://www.w3.org/RDF/
4 RDFS (RDF Schema): https://www.w3.org/TR/rdf-schema/
5 RDFLib (RDF Library): https://rdflib.readthedocs.io/
6 KGLAB (Knowledge Graph Laboratory): https://derwen.ai/docs/kgl/
7 https://www.wikidata.org/
8 https://code.google.com/archive/p/cardioshare/
9 https://bio2rdf.org/

respiratorio en niños pequeños. Para ello, se unifican los datos aprovechando el paradigma de los Datos
Enlazados, dónde se mapea los datos Registros del Censo Nacional (nombres, códigos postales y fechas
de nacimiento) con los identificadores del Servicio Nacional de Salud (registros de salud). Además, se
mapea los registros postales del Servicio de Datos Demográficos Personales con el código postal de los
datos de Certificados de Rendimiento Energético y de exposición a la contaminación del aire. Por otro
lado, en [17] describen un enfoque para la integración de sistemas heterogéneos mediante el uso de
puntos de soporte semántico basado en Datos Enlazados. Estos puntos son microservicios ligeros que
permiten la codificación de conocimiento sobre la marcha, transformando datos de sistemas existentes
a un formato semántico (como RDF) y viceversa. La meta era crear una capa semántica no persistente
para facilitar la interoperabilidad, consulta y razonamiento para sistemas inteligentes, como los
sistemas multiagente, incluso en entornos originalmente no semánticos.

Finalmente, en cuanto a la integración de los Datos Enlazados con Lógica Dialéctica, Aprendizaje
Automático y Meta-Aprendizaje, tenemos los siguientes trabajos. En [18, 19, 20, 21] se detalla el
framework DL-Learner, que implementa varios algoritmos de Aprendizaje Automático Supervisado
para construir clasificadores, usando archivos en OWL y RDF como entrada. El objetivo de DL-
Learner es proporcionar un framework con componentes reutilizables para resolver distintos
problemas, usando una variedad de fuentes de conocimiento que juntas forman el conocimiento de base
para una tarea dada. Dentro de ese conocimiento se pueden seleccionar casos positivos y negativos,
para ser procesados por un algoritmo de Aprendizaje Automático para generar un clasificador. Por otro
lado, se describe el problema de aprendizaje, y se especifica el algoritmo que se desea utilizar para
resolverlo.

Por otro lado, en el trabajo [22] se explora el Meta-Aprendizaje con el fin de mejorar la eficiencia y la
eficacia de los modelos de Aprendizaje Automático basados en el conocimiento y la experiencia
previos. Ese trabajo propone una arquitectura de Meta-Aprendizaje compuesta por tres módulos. El
primer módulo está representado por las Meta-Características, que ayudan a caracterizar los conjuntos
de datos de acuerdo con el rendimiento de los algoritmos de Aprendizaje Automático en diferentes
tareas. El segundo módulo está compuesto por el Meta-Aprendiz, que son algoritmos que aprenden de
las Meta-Características y los datos sobre el rendimiento de tareas anteriores. Utilizan esta información
para seleccionar o construir modelos de conocimiento adecuados y ajustar sus hiperparámetros para
nuevas tareas. Finalmente, los Meta-Dataset son colecciones de metadatos, es decir, que son datos
sobre los datos. Estos se construyen a partir de los metadatos resultantes de otras tareas de aprendizaje
y proporcionan una rica fuente de información para alimentar al Meta-Aprendiz. De la misma manera,
en [23] se aborda el desafío de construir modelos Aprendizaje Automático usando Meta-Aprendizaje
para automatizar la selección de algoritmos y el ajuste de hiperparámetros. En este trabajo se recopila
información tanto sobre las características de los conjuntos de datos (Meta-Características) como de los
modelos generados (Meta-Modelos), y con esta información, el algoritmo Meta-Aprendizaje realiza
recomendaciones de configuraciones para la generación de nuevos modelos.

Como se puede constatar, en la literatura reciente no hay trabajos previos que combinen los Datos
Enlazados con Lógica Dialéctica, ni que integren los Datos Enlazados con Aprendizaje Automático y
Meta-Aprendizaje. Los trabajos previos tocan aspectos específicos sobre los usos de los Datos
Enlazados con Aprendizaje Automático, sin la integración con Meta-Aprendizaje o con la Lógica
Dialéctica. Además, aunque las aplicaciones basadas en Datos Enlazados han demostrado un enorme
potencial en el ámbito de las AmIs, la realidad es que su integración ha permanecido, en gran medida,
en la fase de propuesta teórica más que en propuestas implementadas. En ese sentido, este trabajo busca
proponer una arquitectura computacional que explote las ventajas de los Datos Enlazados para generar
conocimiento en un AmI, que permita la integración de los mecanismos/herramientas de Lógica
Dialéctica, Aprendizaje Automático y Meta-Aprendizaje, para enriquecer ese proceso.

1.4 Organización de la Tesis

Esta tesis se estructura en seis capítulos, cada uno profundizando en aspectos fundamentales para la
generación de conocimiento en AmI mediante Datos Enlazados, y la integración de Aprendizaje
Automático, Meta-Aprendizaje y Lógica Dialéctica. En el capítulo 1 se describe el planteamiento del
problema y su importancia, los objetivos de la investigación y los antecedentes relacionados con los
enfoques asociados a las áreas de los Datos Enlazados, Lógica Dialéctica, Aprendizaje Automático y
Meta-Aprendizaje. En el capítulo 2 se detallan los aspectos teóricos relacionados con las distintas áreas
cubiertas en la tesis. En el capítulo 3 se presentan las arquitecturas de gestión de conocimiento basadas
en Datos Enlazados, específicamente, una ampliación del middleware MiSCi (Middleware for Smart
Cities) con una capa de Datos Enlazados y una arquitectura para la generación automática y
enriquecimiento de ontologías emergentes, ambas fundamentadas en la metodología MEDAWEDE
(Metodología para el Desarrollo de Aplicaciones Web utilizando Datos Enlazados). En el capítulo 4 se
presenta un Sistema de Recomendación Híbrido que integra lógica descriptiva/dialéctica con Datos
Enlazados, detallando su arquitectura, funcionamiento y aplicaciones en contextos con información
inconsistente o ambigua, como el diagnóstico médico y el análisis de competencias profesionales. En el
capítulo 5 se describe una arquitectura de Meta-Aprendizaje para la generación de modelos de
Aprendizaje Automático basada en Datos Enlazados, incluyendo una ampliación con un Meta-
Algoritmo Autónomo que incorpora aprendizaje por transferencia y generación de datos sintéticos, así
como módulos para la generación de características y datos artificiales, ilustrado con diversos casos de
estudio. Por último, en el capítulo 6 se presentan las conclusiones del trabajo y los trabajos futuros.

2 Marco Teórico

En este capítulo se presenta una revisión general de los aspectos teóricos más importantes, que
coadyuven a definir estrategias basadas en los Datos Enlazados, en el contexto específico de los AmI,
los cuales requieren la integración de mecanismos de Aprendizaje Automático, Meta-Aprendizaje y
Lógica Dialéctica, para la generación de conocimiento en un AmI. En ese sentido, todas esas áreas
serán revisadas.

2.1 Datos Enlazados

Los Datos Enlazados describen una forma de publicar los datos en Internet para que se puedan
interconectar entre ellos [24]. Particularmente, los Datos Enlazados es la manera que tiene la Web
Semántica de enlazar un conjunto de datos que estén publicados en la Internet, para mejorar la
comprensión de sus significados, tanto para los humanos como para las máquinas [3,4].

A.1.1 Principios de los Datos Enlazados

Tim Berners-Lee introduce los principios de los Datos Enlazados, los cuales son [3,4,25]: i) Identidad:
Utilizar URIs para identificar los recursos en Internet (por ejemplo, páginas web, objetos abstractos,
servicios, ficheros, etc.); ii) Accesibilidad: Usar URIs HTTP (Hypertext Transfer Protocol) para que las
personas puedan buscar recursos; iii) Estructura: Utilizar estándares RDF para describir recursos, y
SPARQL para realizar consultas; iv) Navegación: Incluir enlaces a otras URIs para descubrir más
recursos.

El primer principio busca asignar un nombre único a las cosas o conceptos en la Internet, y para ello,
usa el mecanismo de identificación única URIs para referirse a cualquier recurso. Un ejemplo que
puede dilucidar la importancia de las URIs es la representación del concepto “País”. Si se quiere
identificar al país “Venezuela” por su nombre, surge un gran dilema, ¿Qué nombre usar?, se podrían
usar los siguientes nombres: Venezuela, República Bolivariana de Venezuela, VE, VEN, Bolivarian
Republic of Venezuela, entre otros, es decir, se tendría problemas con los sinónimos, los sobrenombres
y los idiomas. La solución a este problema consiste en usar el siguiente URI:
http://dbpedia.org/resource/Venezuela, que identifica a Venezuela como país, sin importar idioma,
diminutivo, etc.

El segundo principio hace hincapié en el uso de URIs basado en el protocolo HTTP, para permitir
recuperar desde la Web toda la descripción del recurso identificado por el URI. En el siguiente ejemplo
se muestra el interés de este principio: si se usa como URI el código ISO numérico asignado a
Venezuela, que es 862, y se coloca en un navegador, no se obtiene una descripción del recurso. En

cambio, si se usa una URI con un HTTP como http://dbpedia.org/resource/Venezuela, se mostraría una
página con la información sobre el recurso.

El tercer principio se basa en el formato y la calidad de la descripción de los recursos, para poder
obtener información útil sobre dicho recurso. Para ello, dichas descripciones se deben materializar en
forma de documentos Web. Los destinados a ser leídos por los seres humanos a menudo se representan
como HTML, y los destinados al consumo de las máquinas se representan como datos RDF o XML (en
inglés, eXtensible Markup Language). Por ejemplo, si se solicita la descripción de la URI
http://dbpedia.org/resource/Venezuela desde un navegador, automáticamente es redireccionado a la
versión HTML ubicada en http://dbpedia.org/page/Venezuela. Ahora, si se solicita la misma URI
indicando a través de una aplicación, automáticamente es redireccionado a
http://dbpedia.org/data/Venezuela.xml. Lo anterior, lo podemos comprobar con la aplicación CURL de
la siguiente manera:

Por defecto:
curl -I http://dbpedia.org/resource/Venezuela
Indicando en la cabecera que es para una aplicación:
curl -I -H "Accept: application/rdf+xml" http://dbpedia.org/resource/Venezuela

El cuarto principio fomenta la interconexión de recursos relacionados, la cual es necesaria para
conectar los datos que se tienen de forma que no queden aislados. Como dichos recursos están
publicados con URI con el protocolo HTTP, otras personas o aplicaciones pueden vincularlo a sus
datos. Esta capacidad de seguir los vínculos permite a la gente navegar por la Web de datos, tal como
pueden navegar por la Web de documentos. Por ejemplo, si se detalla el recurso
http://dbpedia.org/resource/Venezuela, se observa que tienen muchos enlaces a otros recursos, se puede
mencionar algunos enlaces como: dbo:currency, dbo:anthem, dbp:languages, entre otros. Al seguir el
recurso con su URI dbr:Spanish_language enlazado a través de dbp:languages, se muestra toda la
información sobre el idioma español, el cual a su vez tienen más enlaces, lo que indica que estamos en
presencia de un grafo de recursos.

A.1.2 Modelado de los Datos Enlazados

Un punto muy importante en los Datos Enlazados es el modelado, porque especifica la manera de
representar el conocimiento, así como también, los lenguajes y los vocabularios u ontologías
necesarias para ese fin. En el caso de la representación del conocimiento para los Datos Enlazados, el
esquema actualmente utilizado se fundamenta en las redes semánticas, ya que es una forma de
representar el conocimiento por medio de conceptos y sus interrelaciones, bajo la forma de grafos [26,
27]. Los elementos básicos en todos los esquemas de redes son: i) Los nodos, que en este caso
representan conceptos, unidos por arcos que representan las relaciones entre los conceptos. ii) Un
conjunto de procedimientos de inferencia que operan sobre la red.

La representación mental de estas redes son las ontologías. El concepto de ontología en el ámbito
tecnológico más ampliamente aceptada es la propuesta por Gruber (2008), “La ontología define un

http://dbpedia.org/page/Venezuela

conjunto de primitivas de representación con la que se puede modelar un dominio de conocimiento”
[28], es decir, una ontología es un sistema de conceptos (o un vocabulario), usado como elemento
básico (primitivo), para la construcción de sistemas basados en el conocimiento. En la ontología, una
afirmación se representa como una tripleta que consta de tres elementos: un sujeto, un predicado y un
objeto. El sujeto y el objeto representan a los dos conceptos o recursos a relacionar; el predicado
representa la naturaleza de esta relación, formulada de manera direccional (del sujeto al objeto). Por
ejemplo, en la tripleta Venezuela es_un País, Venezuela es el sujeto, País es el objeto y es_un es el
predicado. En las tripletas RDF (RDF-Triple), el predicado es denominado "propiedad" [29]. Un objeto
puede ser también un literal o valor de texto, lo cual permite definir una propiedad para un recurso.

En cuanto a los lenguajes de modelado, los actuales desarrollos en la representación del conocimiento
están siendo influenciados por la Web Semántica, y han incorporado lenguajes y estándares de
representación del conocimiento basados en XML, e incluyen a RDF, RDFSchema, y OWL [30,31]. El
XML permite la definición de gramáticas y etiquetas para la información contenida en los documentos,
pero tiene un problema importante, y es que aporta una estructura, pero no una semántica [32,31]. Por
otro lado, el lenguaje RDF es más expresivo para el procesamiento semántico, ya que a través de los
recursos, propiedades y sentencias (combinación de recursos y propiedades), permiten una
representación explícita de la semántica de los datos. La W3C considera al lenguaje RDF como el
estándar para describir recursos (cualquier concepto que tenga una URI) en la web [30]. A
continuación, se muestra un ejemplo, en donde se observa la descomposición de la información descrita
en una frase hasta obtener una representación de ese conocimiento en RDF.

Venezuela es un país que forma parte de América del Sur, y su idioma es el Español

La frase escrita anteriormente se puede descomponer en tres tripletas, donde el sujeto es Venezuela; los
predicados son es_un, es_parte y tiene_idioma; y los objetos son País, América_del_Sur y Español,
dando como resultado lo siguiente:

Venezuela es_un País
Venezuela es_parte América_del_Sur
Venezuela tiene_idioma Español

Sujeto y Propiedad se expresan con una URI, y el Objeto se expresa con URI si se relaciona a otro
concepto, o como un Valor si define una propiedad de un recurso:

dbpedia:Venezuela rdf:type dbpedia-owl:Country .
dbpedia:Venezuela dcterms:subject dbpedia-c:Países_de_América_del_Sur .
dbpedia:Venezuela dbpedia-owl:spokenIn dbpedia:Idioma_español .

Ahora, el aporte de RDF a la sintaxis todavía es muy superficial para representar el conocimiento, ya
que solo proporciona mecanismos para expresar declaraciones simples sobre recursos, utilizando
propiedades y valores. En RDFSchema se agrega la noción de clases y propiedades, tal que se pueden
crear jerarquías de clases y propiedades. También, permite especificar el dominio y rango de una
propiedad, es decir, indica los tipos de sujetos y objetos de una propiedad en la tripleta. A continuación,

se muestra un conjunto de tripletas usando las nuevas especificaciones del lenguaje RDFSchema, para
enriquecer el conocimiento semántico de los recursos descrito en RDF:

dbpedia-owl:Country rdf:type owl:Class .
wikidata:Q1211934 rdf:subClassOf dbpedia-owl:Country .
wikidata:Q1211934 rdfs:label "Hispanos"@es .
dbpedia-owl:Language rdf:type owl:Class .
dbpedia-owl:spokenIn rdf:type rdf:Property .
dbpedia-owl:spokenIn rdfs:dominio dbpedia-owl:Country .
dbpedia-owl:spokenIn rdfs:range dbpedia-owl:Language .

En las tripletas mostradas se indica lo siguiente: con la propiedad type se define las clases Country y
Q1211934 (Hispanos según la propiedad label). También se indica que spokenIn es un tipo de
propiedad; con la propiedad subClassOf se indica que Q1211934 es una subclase de Country, es decir,
se crea una jerarquía de clases; con dominio se indica los sujetos de tipo Country de la propiedad
spokenIn; y con range se indica los objetos de tipo Lenguaje de la propiedad spokenIn. Gracias a
estas tripletas, se puede inferir nuevos conocimientos, como los siguientes:

wikidata:Q1211934 rdf:type owl:Class .
dbpedia:Idioma_español rdf:type dbpedia-owl:Language .
dbpedia:Venezuela rdf:type dbpedia-owl:Country .

A pesar de las capacidades que ofrece RDFSchema, aún hace falta una variedad más amplia de
restricciones, y la posibilidad de especificar las condiciones necesarias y suficientes para la
construcción de clases complejas a partir de otras definiciones de clases y propiedades. El lenguaje
OWL extiende a RDF y RDFSchema, y ofrece un conjunto mucho más amplio de capacidades como,
por ejemplo: características, restricciones y anotaciones de las propiedades; intersección, axiomas y
combinaciones booleanas de clases; igualdad; cardinalidad; control de versiones, entre otros [29,30].
De esta gran variedad de capacidades, solo se mostrará el uso de disjointWith y equivalentClass en
las siguientes tripletas.

dbpedia-owl:Country owl:disjointWith dbpedia-owl:Language .

La propiedad disjointWith permite indicar una restricción, donde se especifica que los individuos de
tipo Country no pueden ser de tipo Language, es decir, que sí a un país se le asigna el tipo lenguaje
esto producirá un error de inconsistencia en la ontología.

dbpedia:Idioma_español rdf:subClassOf dbpedia-owl:Language .
dbpedia:Idioma_español rdf:type dbpedia-owl:Idioma_español .
wikidata:Q1211934 owl:equivalentClass dbpedia-owl:spokenIn some
dbpedia:Idioma_español .

La propiedad equivalentClass permite especificar la equivalencia de una clase y una combinación de
clase y propiedades específicas. Para este caso, se indica que la clase Q1211934 (Países hispanos) es
equivalente a los países de habla (spokenIn) española (Idioma_español). Esto permite inferir que a los
países que se le asigne el idioma español serán agrupados en la jerarquía de países hispanos.

Finalmente, en el proceso de presentar la evolución de los lenguajes de modelado, se ha usado un
conjunto de vocabularios y ontologías, que son una parte fundamental para los Datos Enlazados, estos
permiten identificar los tipos de objetos del mundo que nos rodea como, por ejemplo: personas,
direcciones, entre otros. Además, nos permiten identificar las relaciones que existen entre esos objetos.
A continuación, se muestran algunos de los más importantes: i. DBpedia Ontology10: se basa en OWL,
y es la columna vertebral de DBpedia. Esta ha sido creada de forma manual basado en los infoboxes
(hojas informativas para mostrar un resumen del tema de una página) utilizados en Wikipedia. La
ontología actualmente cubre 685 clases, y se describen con 2.795 propiedades diferentes. Entre las
clases que se describen están: Persona, Parques, Deportes, Especies Ciudad, País, entre muchas más. La
información en los artículos de Wikipedia se mapea a través de esta ontología. Por ejemplo, la URI
http://dbpedia.org/ontology/country (dbpedia-owl:Country) para representar al concepto País.
Adicionalmente a esta ontología, DBpedia cuenta con una base de conocimientos que explota el
paradigma de Datos Enlazados en la Web, por medio de URIs a millones de conceptos. Por ejemplo, la
URI http://dbpedia.org/resource/Venezuela (dbpedia:Venezuela) representa el concepto Venezuela.
Actualmente, ya varios proveedores de datos han comenzado a establecer vínculos RDF de sus
conjuntos de datos a DBpedia, haciendo DBpedia una de las herramientas más importantes en la web
de datos. ii. Friend of a Friend (FOAF): es un proyecto que proporciona un vocabulario RDF para
expresar metadatos que describen a personas, sus actividades, y sus relaciones con otras personas y
objetos. Por ejemplo, http://xmlns.com/foaf/0.1/name (foaf:name) representa la relación de un
concepto con su etiqueta, quedando la tripleta así: dbpedia:Venezuela foaf:name "Venezuela"@es.
iii. Dublin Core Metadata Initiative (DCMI): es una iniciativa para crear un vocabulario para describir
recursos como: imágenes, páginas web, videos, libros, etc. Este vocabulario es capaz de proporcionar la
información descriptiva básica sobre cualquier recurso, sin que importe el formato de origen, el área de
especialización o el origen cultural. Por ejemplo, http://purl.org/dc/terms/subject (dcterms:subject)
representa la relación de un concepto como tema de otro concepto: dbpedia:Venezuela
dcterms:subject dbpedia:Países_de_América_del_Sur.

Para los Datos Enlazados es recomendable utilizar términos de vocabularios y ontologías bien
conocidos, en lugar de crear equivalentes, y solo se deben definir nuevas ontologías o vocabularios
cuando los actuales no ofrezcan los requerimientos deseados. Existen páginas dedicadas a indexar
vocabularios y ontologías para facilitar su búsqueda, ejemplo de estas páginas son http://lov.okfn.org y
http://stats.lod2.eu/vocabularies.

El aprovechamiento óptimo de los Datos Enlazados se logra mediante la integración de tecnologías
clave que permiten un flujo de datos eficiente y significativo. Estas tecnologías incluyen Formatos de
Almacenamiento que estructuran los datos, Lenguajes de Consulta que permiten la extracción de
información precisa y Herramientas de Publicación que facilitan el acceso y la reutilización de los
datos. Para obtener detalles adicionales sobre estas tecnologías, refiérase al Anexo 2.A.

10 http://dbpedia.org/ontology/

2.2 Aprendizaje Automático

El Aprendizaje Automático o Machine Learning en inglés, define a los algoritmos que buscan extraer
conocimiento desde las características resaltante de un problema, permitiendo la construcción de
modelos de conocimientos [8]. Las características o variables, los modelos de conocimiento a definir, y
las técnicas de aprendizaje automático, son los ingredientes principales en el Aprendizaje Automático
(ver Fig. 2.1). Las características representan los atributos/variables observables del problema, el
modelo es el conocimiento generado con la técnica de Aprendizaje Automático (descriptivo, predictivo,
de optimización, etc.), y las técnicas son los mecanismos o estrategias de aprendizaje que se utilizan
para generar los modelos de conocimiento.

2.2.1 Tipos de aprendizaje

El Aprendizaje Automático se divide en varios tipos de aprendizaje: supervisado, no supervisado,
reforzado, entre otros. Particularmente, según la naturaleza del etiquetado de datos se definen dos tipo
de aprendizaje (ver Fig. 2.2): supervisado y no supervisado [8, 33]. El aprendizaje supervisado se
utiliza para estimar un mapeo desconocido de entrada y salida, a partir de muestras conocidas de
entrada y salida, donde la salida está etiquetada. Este se divide en dos categorías de algoritmos, de
regresión/predicción (el tipo de campo objetivo es numérico o continuo) y clasificación (el tipo de
campo objetivo es categórico o discreto). El aprendizaje no supervisado se utiliza para encontrar
relaciones de similitud, diferencia o asociación en los datos de entrada, y solo se dan muestras de
entrada al sistema de aprendizaje. Este se divide en agrupamiento (datos que son similares entre sí.),
anomalía (datos que se diferencian de las demás) y asociación (datos que se relacionan con otros
datos).

Figura 2.1: Aprendizajes Automáticos y sus elementos

Por último, cada una de las técnicas y/o algoritmos de Aprendizaje Automático establece sus propias
estrategias/mecanismos de aprendizaje para concebir sus modelos de conocimiento. Algunas de las
técnicas o algoritmos más populares son los siguientes [34]:

 Árbol de Decisiones: Usa un árbol de decisión para modelar la relación entre las características
del modelo y los potenciales resultados, cada árbol está formado por nodos, arcos y ramas. Cada
nodo representa los atributos de un grupo de datos que se va a clasificar, y cada arco representa
un valor que el nodo puede tomar [34]. Al moverse por las ramas del árbol se puede ver la
relación entre los valores de los atributos para el conjunto de datos bajo estudio.

 K-medias: Su objetivo es partir un conjunto de n valores en k grupos distintos, en el que cada
observación pertenece al grupo cuyo valor medio es más cercano. Todas las observaciones que
poseen características similares se colocan en el mismo grupo, y la media de los valores en un
grupo particular es el centro de ese grupo [34].

 Redes Neuronales: es un algoritmo que imita el funcionamiento del cerebro, y en particular de
las neuronas, de sus interconexiones, y de cómo ciertos estímulos de entradas producen ciertas
salidas o resultados. Una red neuronal multicapas funciona en tres grupos de capas [34]. La
capa de entrada recibe la información. Las capas ocultas procesan la entrada. Por último, la capa
de salida envía la respuesta calculada. En general, una neurona artificial suma sus entradas
(como las dendritas), a partir de allí establece su estado de activación (como el soma), y envía
su salida a sus neuronas vecinas (como el axón).

2.2.2 Técnicas avanzadas de redes neuronales

Figura 2.2: Los algoritmos de Aprendizajes Automáticos basados en datos

En el mundo de las técnicas avanzadas de redes neuronales, nuestros trabajos se centraron en dos
arquitecturas de aprendizaje profundo que han revolucionado la generación de datos sintéticos y el
campo de la visión por computadora: Autoencoders Variacionales (VAE, Variational AutoEncoders) y
Redes Neuronales Convolucionales (CNN, Convolutional Neural Network). Específicamente,
utilizamos VAE para la generación de datos sintéticos, aprovechando su capacidad para la
reconstrucción de información, y CNN para la extracción automática de características relevantes.

 VAE: están diseñadas para aprender una representación latente comprimida de los datos de
entrada. Los VAE introducen un elemento de probabilidad en su arquitectura, lo que les permite
generar nuevos datos similares a los de entrenamiento, por lo tanto, son ideales para la
reconstrucción de información faltante en imágenes y para la generación de datos sintéticos [35,
36]. Estas redes están compuestas por tres partes [37, 38] (ver Figura 2.3): El Encoder,
representado en color verde, es la parte inicial del modelo que comprime los datos de entrada en
un espacio latente de menor dimensión. El Espacio Latente, representado en color rojo, es la
parte central del modelo y es una representación comprimida de los datos de entrada, donde
cada punto representa una distribución de probabilidad. El Decoder, representado en color azul,
es la parte final del modelo que reconstruye los datos originales a partir de la representación
latente.

 CNN: están diseñadas para trabajar con datos de imágenes, y su arquitectura aprovecha la
propiedad de la localidad de las imágenes (es decir, que los píxeles cercanos están más
relacionados entre sí). Las CNN tienen la capacidad de aprender automáticamente las
características más relevantes de las imágenes y de reconocer objetos independientemente de su
posición y orientación en la imagen, por lo tanto, son ideales para extracción automática de
características y para las tareas de clasificación y detección. Estas redes están compuestas por
diferentes tipos de capas [39] (ver Figura 2.4): Las capas convolucionales, representadas en
color amarillo, realizan la mayor parte de los cálculos, y es donde se extraen las características

Figura 2.3: Arquitectura básica de un VAE

esenciales de los datos de entrada. Esto se logra mediante la aplicación de múltiples filtros,
también conocidos como kernels, que actúan como detectores de características. Cada filtro se
desliza sobre la entrada, realizando operaciones de convolución para identificar patrones
específicos y generar mapas de características que resaltan la presencia de dichas
características. Las capas de pooling, representadas en color azul, reducen la dimensionalidad
de las características extraídas y hacen que la representación sea más invariante a pequeñas
traslaciones. La capa totalmente conectada, representada en color verde, realiza la tarea de
clasificación a partir de las características obtenidas en las capas anteriores, generando una
salida final.

2.3 Meta-Aprendizaje

El Meta-Aprendizaje (en inglés Meta-Learning) permite a Aprendizaje Automático aprender a
aprender, mediante tareas que adaptan a las técnicas de Aprendizaje Automático a nuevos entornos [40,
41, 9], es decir, aprende de las experiencias previas de forma sistemática y basada en datos. En general,
el Meta-Aprendizaje adapta sus respuestas en función de las características inherentes a las tareas de
Aprendizaje Automático que ha resuelto previamente [9, 42]. En específico, se necesita, por un lado,
recopilar metadatos que describan las tareas de aprendizaje y los modelos aprendidos previamente. Esto
comprende las configuraciones exactas del algoritmo utilizado para entrenar los modelos, incluidos los
ajustes de hiperparámetros, las técnicas de aprendizaje, las evaluaciones del modelo resultante, entre
otros. Para ello, se apoya en el conocimiento de las fuentes de dato (Meta-Dataset), conocimiento de las
características de los datos (Meta-Características), conocimiento de las técnicas de aprendizaje (Meta-
Técnicas) y conocimiento de los modelos de conocimiento (Meta-Modelos).

Figura 2.4: Arquitectura básica de una CNN

2.3.1 Meta-Dataset

Los Meta-Dataset consisten en información que caracteriza a los conjuntos de datos, describen el
contenido, calidad, condiciones, historia, disponibilidad y otras características [9, 42]. Esta descripción
facilita la localización, selección, recuperación y utilización de los conjuntos de datos [9].

2.3.2 Meta-Características

Las Meta-Características (Meta-Feature) son atributos que describen características de los datos,
ofreciendo información sobre cómo se construyó los datos, su calidad, su complejidad y otras
propiedades generales. Normalmente estos Meta-Feature se obtienen a partir de características
individuales, combinaciones de características o información específica del dominio [9, 42]. A
continuación se presentan diferentes tipos de características:

 Estadísticas descriptivas: Media, mediana, desviación estándar, mínimo, máximo, rango,
cuartiles, etc.

 Medidas de complejidad: Número de instancias, número de atributos, número de clases,
proporción de valores faltantes, etc.

 Medidas de balance de clases: Proporción de instancias en cada clase.
 Medidas de correlación: Correlación de Pearson, coeficiente de Spearman, etc.
 Medidas de redundancia: Número de atributos redundantes.
 Medidas de ruido: Nivel de ruido en los datos, número de valores extremos, entre otros.
 Dominios específicos: Polaridad o emoción, intensidad narrativa, similitud entre los productos o

usuarios, engagement, género musical, entre muchos más.

2.3.3 Meta-Técnicas

Las Meta-Técnicas (Meta-Technique) es información sobre las estrategias, parámetros y algoritmos que
buscan optimizar y mejorar el proceso de aprendizaje de los modelos de Aprendizaje Automático [42].
Gestiona información como:

 Tipo de técnica: Cómo construir el modelo adecuado (clasificación, regresión, clustering, entre
otros).

 Selección de hiperparámetros: Cómo elegir los mejores valores para los parámetros de un
modelo (tasa de aprendizaje, número de capas, etc.).

 Diseño de arquitecturas: Cómo construir modelos más eficientes y efectivos.
 Optimización de algoritmos: Cómo acelerar el entrenamiento y mejorar la convergencia de los

modelos.

 Evaluación de modelos: Cómo medir la calidad y generalización de los modelos (métricas).

2.3.4 Meta-Modelos

Los Meta-Modelos (Meta-Model) son, en esencia, repositorios de conocimiento que almacenan
información detallada sobre experimentos de Aprendizaje Automático realizados previamente [9, 42].
Esta información no solo incluye las métricas de rendimiento y los valores de los hiperparámetros, sino
que también captura las características intrínsecas de los datos, las técnicas de preprocesamiento
empleadas, la arquitectura de los modelos y las condiciones experimentales en general. Es decir, refleja
las relaciones complejas entre las Meta-Características de una tarea y las configuraciones específicas de
la técnica usada (Meta-Técnicas) para la construcción de un modelo [9]. En general, los Meta-Modelos
actúan como una especie de "memoria colectiva" para el Aprendizaje Automático, permitiendo
aprender de los errores y éxitos del pasado para construir modelos más eficientes y efectivos. A
continuación se presenta la utilidad de los Meta-Modelos [9, 42]:

 Transferencia de conocimiento: Permiten reutilizar el conocimiento adquirido en tareas
anteriores para acelerar el desarrollo de nuevos modelos y mejorar su rendimiento.

 Selección de modelos: Ayudan a seleccionar el modelo más adecuado para una nueva tarea,
basándose en las características de los datos y los objetivos del proyecto.

 Optimización de hiperparámetros: Facilitan la búsqueda de los mejores valores de los
hiperparámetros, evitando la exploración exhaustiva del espacio de búsqueda.

 Análisis de sensibilidad: Permiten evaluar la influencia de diferentes factores en el rendimiento
de los modelos, como el tamaño del conjunto de datos o la elección de un algoritmo específico.

 Descubrimiento de patrones: Pueden revelar patrones y relaciones entre las características de los
datos, las técnicas de aprendizaje y el rendimiento de los modelos, lo que puede conducir a
nuevos conocimientos y avances en el campo del Aprendizaje Automático.

2.4 Lógica Dialéctica

La palabra Dialéctica tiene muchas definiciones, la más concisa indica que es una teoría y técnica
retórica de dialogar y discutir para descubrir la verdad mediante la exposición y confrontación de
razonamientos y argumentaciones contrarias entre sí. En otras palabras, siempre debe incluir de algún
modo la contradicción [43]. En la Lógica Dialéctica, los axiomas dialécticos permiten que las
contradicciones y ambivalencias sean válidas dentro de un modelo formal [44]. En este sentido, la
Lógica Dialéctica y la lógica formal parecen seguir caminos opuestos, y en efecto, la Lógica Dialéctica
sería el reino de la contradicción, mientras que la lógica formal sería el reino de la no-
contradicción [43].

Ahora bien, en la lógica del razonamiento humano existen instancias o estados que son afectados por
las contradicciones, es decir, que reducir la lógica a una lógica sin contradicción sería tanto como
querer ocultar la realidad [43, 45]. La Lógica Dialéctica posee la capacidad de resolver situaciones en
las que un razonamiento se encuentra con información inconsistente, ya que tiene a la mano
información tanto para creer una cosa como para, al mismo tiempo, creer lo contrario. Es decir, está en
un estado de contradicción o ambigüedad. Los posibles estados que gestiona la Lógica Dialéctica son
los siguientes [10]:

 Declaraciones contingentes sobre el futuro: indica que algo fue verdadero y falso en el pasado,
por lo que no se puede prever su futuro. Ej. “Mañana habrá una guerra” puede ser cierto o
falso, ya que han ocurrido ambos casos en el pasado.

 Falla de una presuposición: suponer algo que no es realmente cierto. Ej. “Es un niño”, si en la
presuposición se asume un posible valor, se puede pensar que es un niño, y allí está la falla,
porque también podría ser una niña

 Vaguedad: falta de claridad, precisión o exactitud en los fenómenos del lenguaje natural. Ej. En
la oración “Él es calvo”, no se puede negar que una persona con cero cabellos sea calva, como
tampoco se puede negar que una persona con 1000 cabellos sea calva.

 Discurso ficticio: tomar decisiones según ciertos supuestos imaginarios (lógicas imaginarias no
aristotélicas). Ej. “Las vacas están volando”, se puede decir que es falso porque nuestras
creencias nos indica que las vacas no vuelan, pero podría ocurrir que las vacas están siendo
transportadas en un avión, y la respuesta sería verdadera. Otro contexto donde sería verdadero
es si se está hablando de un juego donde las leyes o creencias son distintas (mundo imaginario).

 Razonamiento contrafáctico: pensar lo que pudo ser y no fue. Ej. “Si no hubiese salido,
hubiera aprobado y ahora no tendría que estudiar para el recuperativo”. Representa algo
que no sucedió, pero que podría haber ocurrido. Allí subyace la incertidumbre, en eso que pudo
haber ocurrido.

Finalmente, en la Universidad de Miami en EEUU se desarrolló un razonador dialéctico para el sistema
TPTP, denominado JGRM3, basado en la Lógica Dialéctica RM3 [4]. Esta lógica pertenece a la rama
de las Lógicas Paraconsistente, o sea, permite que las inconsistencias y las contradicciones sean
válidas. Sin embargo, la Lógica Dialéctica se distingue de otras lógicas paraconsistentes por su
aceptación del Modus Ponendo Ponens en su forma clásica, lo que facilita la derivación de
conclusiones a partir de implicaciones y antecedentes afirmados. Entendiéndose que el Modus Ponendo
Ponens (modo que afirma afirmando), también llamado Modus Ponens (modo afirmativo), establece
que si un término implica a otro, y el término es verdadero; entonces se puede inferir que el otro
término es verdadero. Por ejemplo, “Si está lloviendo, te espero dentro del teatro”, y “está
lloviendo”, por lo tanto, “te espero dentro del teatro.

3 Arquitecturas de Gestión de Conocimiento basado en Datos
Enlazados

En este capítulo se presentan dos arquitecturas para la gestión de conocimiento basado en los Datos
Enlazados, estás ideas surgen de la revisión de la literatura sobre los Datos Enlazados en [46]. Además,
ambas arquitecturas son especificadas según MEDAWEDE [24].La estructura del capítulo es la
siguiente: La sección 3.1 se basa en la sección 3 del artículo presentado en el Anexo 3.A, y presenta
una ampliación de las capacidades del middleware MiSCi [47, 48, 49], al agregar una nueva capa
denominada Datos Enlazados, para identificar, describir, conectar, relacionar y explotar los distintos
datos generados por los sensores, usuarios y las aplicaciones de la ciudad inteligente. La sección 3.1.2
ilustra un caso de estudio del MiSCi, basándose en la sección 4 del artículo presentado en el Anexo
3.A. La sección 3.2 se basa en la Sección 3 del artículo presentado en el Anexo 3.B y la Sección
“Materiales y métodos” del artículo presentado en el Anexo 3.C, y describe una arquitectura que
permite crear y enriquecer ontologías emergentes de forma autónoma, usando como insumo el
paradigma de Datos Enlazados. Finalmente, la sección 3.2.4 presenta un caso de estudio del generador
ontológico, basándose en la sección 4 del artículo presentado en el Anexo 3.B.

3.1 Ampliación del MiSCi extendido con Datos Enlazados

Esta sección ofrece un resumen extenso del trabajo presentado en [50], y los detalles se encuentran en
la sección 3 del Anexo 3.A. En esta investigación se amplía el trabajo propuesto en [47, 48, 49], al
agregar una nueva capa denominada Datos Enlazados (Linked Data Layer – LDL), que aumenta las
capacidades del middleware MiSCi (ver Figura 3.1). Los Datos Enlazados responden a varias
necesidades en las ciudades inteligentes: la primera es para interpretar grandes cantidades de datos que
provienen de distintas fuentes como: sensores, efectores, entre otros, donde muchos de estos datos son
manejados en tiempo real. La segunda es para enriquecer los datos con información semántica,
proveniente de MiSCi o de fuentes externas.

En particular, explicaremos la capa desarrollada en ese trabajo, la capa LDL. Los distintos agentes de la
capa LDL automatizan las etapas de la metodología MEDAWEDE, en el middleware MiSCi.
MEDAWEDE es una metodología que permite desarrollar servicios basados en el paradigma de Datos
Enlazados, y está compuesta por seis etapas divididas en dos grandes tareas. La primera tarea tiene la
finalidad del enriquecimiento de los datos y su transformación a Datos Enlazados, y está integrada por
las siguientes etapas [24]: i) Especificación: en esta fase se seleccionan las fuentes de datos; ii)
Modelado: se centra en la creación del modelo que describe el conocimiento del área de estudio, para
ello se utilizan vocabularios estándares, se reutilizan ontologías, e incluso, se diseñan ontologías
propias, iii) Generación: se centra en la transformación de los datos al lenguaje RDF; iv) Vinculación:
en esta fase se vinculan los datos con otros conjuntos de datos para aumentar su valor, visibilidad y
calidad, v) Publicación: se pone a disposición los datos en repositorios de tripletas. La segunda tarea
tiene como objetivo la explotación de los Datos Enlazados, y la integra la siguiente etapa: vi)
Explotación: esta etapa permite el manejo e integración de distintas interfaces o aplicaciones, para
consumir los recursos publicados de manera agradable y sencilla.

En la capa LDL se llevan a cabo dos procesos importantes, según MEDAWEDE: i) Enriquecimiento:
Este proceso realiza las etapas de especificación, modelado y generación de los datos de MiSCi, por
parte de los agentes ILDA (Internal Linked Data Agent) y ELDA (External Linked Data Agent).
Además, se realizan las tareas de vinculación y publicación de los datos de MiSCi por parte del agente
LDIA (Linked Data Integration Agent); ii) Explotación: Este proceso realiza la etapa de explotación de
los datos de MiSCi, la cual es realizada por el agente LDKA (Linked Data Knowledge Agent). Ahora
bien, estos agentes pueden ser activados simultáneamente desde distintos procesos, según las
circunstancias que lo ameriten.

El proceso de enriquecimiento semántico implica recolectar datos internos y externos al MiSCi (ver
Figura 3.2). La recolección de datos internos se activa cada vez que algún agente CzA, AppA o DA es
actualizado, para lo cual se invoca al agente ILDA con los datos nuevos que pueden provenir
simultáneamente de diferentes fuentes (ver paso 1 en Figura 3.2). Estos datos son preparados y
enriquecidos simultáneamente con información del Servicio Web de Contexto (Context Web Services -
Cx WS) y del Servicio Web de Meta Ontología (Meta Ontology Web Services – MO WS) (ver paso 2 y

Figura 3.1: Extensión del middleware MiSCi con Datos Enlazados

3 en Figura 3.2). De la misma manera ocurre con la recolección de los datos externos, lo cual es
realizado por el agente ELDA. Luego, el agente LDIA es activado con la información enriquecida
generada por los agentes ILDA o ELDA, para vincular los datos previamente obtenidos con otros Datos
Enlazados (ver paso 4 en Figura 3.2), para finalmente publicarlos como Datos Enlazados (ver paso 5 en
Figura 3.2).

El proceso de explotación es activado por un agente del MiSCi cuando solicita información enlazada
(ver Figura 3.3). Para este tipo de consulta se debe invocar al agente LDKA de MiSCi (ver paso 1 en
Figura 3.3). Luego, el agente LDKA por medio de los distintos mecanismos inteligentes de explotación
de conocimiento enlazado, explora simultáneamente todas las fuentes de Datos Enlazados, y retorna la
información solicitada por el agente (ver paso 2 en Figura 3.3).

Los agentes de la capa LDL definen cuatro ciclos autonómicos para la autogestión de los Datos
Enlazados en MiSCi, basado en el concepto de ciclos autonómicos como servicios propuestos en [51,
52]. Cada ciclo autonómico establece la relación entre las tareas de los agentes, para la explotación de
cada una de las formas de conocimiento que permite el agente LDKA. Algunas de esas tareas
establecen las reglas a activar del sistema recomendador según el contexto, o identifican el modelo o el
conjunto de datos pertinente a una situación dada, entre otras cosas.

Figura 3.2: Proceso de enriquecimiento semántico de los datos

Figura 3.3: Proceso de explotación de los datos

3.1.1 Especificación de los agentes de Datos Enlazados

La capa de Datos Enlazados está conformada por 4 tipos de agentes. Para la especificación de cada
agente se usa MASINA [53], y en específico, los modelos de agentes y de tareas.

3.1.1.1. Agente de Datos Enlazados Internos (Internal Linked Data Agent - ILDA)

Son los agentes que brindan la capacidad de extracción, curación, agregación y modelado de las fuentes
de información provenientes de agentes internos, como CzA, AppA y DA, para finalmente ser
transformadas a formatos adecuados para el enlazado de datos. Específicamente, su objetivo es
enriquecer los datos del agente solicitante con información del contexto de MiSCi. El diagrama de
actividad (ver Figura 3.4) muestra el servicio de este agente, y está compuesto por dos sub-servicios; el
primero extrae los datos de las fuentes internas, y el segundo enriquece estos datos con información del
contexto y de las ontologías.

Modelo de Agente de ILDA. Este modelo indica el tipo de agente, el rol que cumple y la descripción de
su funcionalidad:

 Tipo: agente de servicio.
 Roles: ofrecer servicio de extracción y enriquecimiento de los datos generados por el MiSCi.
 Descripción: procesa solicitudes para extraer y enriquecer datos de MiSCi con información del

contexto (Cx WS) y de las ontologías (MO WS), a petición de los agentes CzA, AppA, DA

Modelo de tareas de ILDA. El servicio “Enriquecer Datos” del agente ILDA presenta las siguientes
tareas:

 T1. Recibir la solicitud del agente solicitante
 T2. Extraer datos del agente solicitante
 T3. Modelar los datos del agente solicitante
 T4. Generar los datos como RDF

3.1.1.2. Agente de Datos Enlazados Externos (External Linked Data Agent - ELDA)

Son los agentes que brindan la capacidad de extracción, curación, agregación y modelado de las fuentes
de información provenientes del exterior de MiSCi (Redes Sociales, Páginas Web, entre otros), para
finalmente ser transformadas a formatos adecuados para el enlazado de datos, que permitan enriquecer
semánticamente a la capa CAL del MiSCi con información del exterior. Es decir, ofrece el servicio de

Figura 3.4: Diagrama de actividad de ILDA.

extracción y enriquecimiento de las fuentes externas al MiSCi. En la Figura 3.5 se observa su diagrama
de actividad.

Modelo de Agente de ELDA:
 Tipo: agente de servicio.
 Roles: ofrecer servicio de extracción y enriquecimiento de los datos de fuentes externas al

MiSCi.
 Descripción: procesa solicitudes para extraer y enriquecer datos provenientes del exterior

(Redes Sociales, Páginas Web, entre otros) con información del contexto (Cx WS) y de las
ontologías (MO WS).

Modelo de tareas de ELDA. Las tareas del servicio “Enriquecer Datos” de este agente son los
siguientes:

 T1. Recibir la solicitud
 T2. Extraer datos de la fuente externa
 T3. Modelar los datos de la fuente externa
 T4. Generar los datos como RDF

3.1.1.3. Agente de Integración de Datos Enlazados (Linked Data Integration Agent -
LDIA)

Es el agente que brinda la capacidad de vincular y publicar la información interna y externa generada
por ILDA y/o ELDA. Este agente vincula los datos, para luego ser publicados como Datos Enlazados.
En la Figura 3.6 se observa su diagrama de actividad.

Modelo de Agente de LDIA.
 Tipo: agente de servicio.

Figura 3.5: Diagrama de actividad del caso de
uso de ELDA.

Figura 3.6: Diagrama de actividad del
caso de uso de LDIA.

 Roles: ofrecer servicio de vinculación y publicación de datos enriquecidos.
 Descripción: procesa solicitudes de vinculación de datos enriquecidos con los distintos

conjuntos de datos obtenidos en anteriores invocaciones, que luego son publicados como Datos
Enlazados.

Modelo de tareas de LDIA. Las tareas del servicio “Vincular y Publicar los Datos Enriquecidos” de este
agente son:

 T1. Recibir la solicitud con los datos enriquecidos
 T2. Vincular los datos enriquecidos
 T3. Publicar los datos enriquecidos

3.1.1.4. Agente de Conocimiento de Datos Enlazados (Linked Data Knowledge Agent -
LDKA)

Son los agentes que ofrecen mecanismos para explotar el conocimiento vinculado a los Datos
Enlazados, permitiendo capacidades de: análisis semántico, manejo de ambigüedad, etiquetado
semántico, búsqueda exploratoria, visualización, filtrado, entre otros. Los servicios que presta LDKA
son: i) Recomendar Información usando inferencia híbrida de lógica descriptiva/dialéctica para retornar
información según la necesidad particular de un agente; ii) Generar Modelos de Aprendizaje
Automático que permite retornar modelos de conocimiento basado en distintas técnicas de Aprendizaje
Automático como árboles de decisiones, redes bayesianas, crónicas, redes neuronales como las de
aprendizaje profundo, etc.; iii) Generar Datos para entrenamiento de modelos de conocimiento,
muestreos, etc.; iv) Aprender Ontologías usa los Datos Enlazados para poblar nuevas ontologías. El
diagrama de actividad (ver Figura 3.7) muestra los detalles de los servicios prestados por LDKA.

Figura 3.7: Diagrama de actividad del caso de uso de LDKA.

Los cuatros servicios para explotar el conocimiento vinculado a los Datos Enlazados, permiten mejorar
trabajos previos vinculados a la integración de datos, construcción de recomendadores o modelos de
máquinas de aprendizaje más robustos, entre otros.

Modelo de Agente de LDKA. El modelo de agente de LDKA se describe de la misma manera que los
anteriores agentes.

 Tipo: agente de servicio
 Roles: ofrecer servicio de explotación del conocimiento, como Recomendar información,

Generar modelos de Aprendizaje Automático, Generar datos, o Aprender Ontologías.
 Descripción: explora los Datos Enlazados y realiza las transformaciones del conocimiento

según el tipo de solicitud (Recomendar información, Generar modelos de Aprendizaje
Automático, Generar datos o Aprender Ontologías).

Modelo de tareas de LDKA. En la Tabla 3.1 se definen las tareas del agente LDKA, por cada servicio
prestado.

Tabla 3.1: Servicios y tareas de LDKA.

LDKA-S1. Recomendar información

T1. Recibir la solicitud
T2. Inferencia híbrida basado en lógica descriptiva/dialéctica
T3. Retornar información solicitada

LDKA-S2. Generar modelos de Aprendizaje Automático

T1. Recibir la solicitud
T2. Generar modelo de conocimiento basado en técnicas tales como crónicas, redes
neuronales, árboles de decisión, redes bayesianas u otros.
T3. Retornar modelo de conocimiento

LDKA-S3. Generar datos de entrenamiento

T1. Recibir la solicitud
T2. Generar los datos de entrenamiento
T3. Retornar los datos

LDKA-S4. Aprender Ontologías

T1. Recibir la solicitud
T2. Extraer fuentes de datos
T3. Enriquecer Ontologías

3.1.2 Experimentación

Esta sección muestra un resumen extenso del escenario 2 “Explotar Datos” del caso de estudio
presentado en [50], cuyos detalles se encuentran en la sección 4 del Anexo 3.A. Los datos de entrada
necesarios para este escenario son recogidos previamente, o en paralelo, por el proceso de

enriquecimiento (ver escenario 1 en la sección 4 del Anexo 3.A). Estos datos de entrada son publicados
como Datos Enlazados por el agente LDIA.

Este escenario tiene como objetivo mostrar cómo se usan los Datos enlazados por el agente LDKA en
la capa LDL del MiSCi. Además, se muestra el uso de los servicios de LDKA, que requieren de otros
servicios ofrecidos por el mismo. Por ejemplo, en la Figura 3.8 se observa el diagrama de actividad del
agente de conocimiento (Knowledge Agent - KA) del MiSCi, para el servicio de Generar
Conocimiento, que invoca a otros dos servicios del agente LDKA.

A continuación, se describe este escenario (ver Figura 3.9):
1. El agente CzA detecta problemas en los signos vitales del ciudadano, y genera la señal de

alarma al HSS (Sistema Inteligente de Salud), a través del AppA que caracteriza a ese sistema.
2. El agente AppA (HSS) solicita al servicio Recomendar Información del agente LDKA, buscar

los ciudadanos en los alrededores con capacidades de practicar los primeros auxilios, que
permita brindarle atención médica inmediata al paciente.

3. LDKA retorna la información solicitada por AppA (HSS).
4. Luego, AppA (HSS) envía la notificación a los ciudadanos a través de CzA.
5. En los distintos procesos de actualización de conocimiento van emergiendo ontologías, en

consecuencia el componente MO WS va solicitando el servicio de Aprender Ontología de
LDKA, para extraer información y enriquecer dichas ontologías emergentes.

6. LDKA retorna las ontologías emergentes enriquecidas.
7. El AppA (HSS) solicita al servicio Recomendar Información del agente LDKA, recomendar los

servicios de ambulancias, para tratar al paciente y trasladarlo al centro médico más cercano.
8. LDKA retorna la información solicitada por AppA (HSS).
9. El agente AppA (HSS) también solicita al servicio Generar Conocimiento (Figura 3.8) del

agente KA, los posibles diagnósticos y sugerencias de tratamiento.
10. El agente KA necesita un modelo de conocimiento para resolver el problema, por lo que activa

el servicio Generar Modelos de Aprendizaje Automático de LDKA, para obtener el modelo de
conocimiento sobre dicho problema.

11. LDKA genera y retorna el modelo de conocimiento a KA.
12. También KA necesita datos de entrenamiento para afinar el modelo de conocimiento, para eso

solicita al servicio Generar Datos de LDKA.
13. LDKA genera y retorna los datos de entrenamiento para el modelo de conocimiento de KA.
14. Finalmente, el agente del MiSCi retorna los posibles diagnósticos y sugerencias de tratamiento

a AppA (HSS).

Figura 3.8: Diagrama de actividad del KA.

En este escenario, se le solicita a LDKA explotar los Datos Enlazados para generar conocimiento y
responder a las distintas necesidades presentes en el MiSCi. LDKA responde con información
contextualizada y adaptada a cada necesidad.

3.2 Generación Automático de Ontologías basado en Datos Enlazados

Esta sección presenta un resumen extenso de los trabajos presentados en [54, 55], cuyos detalles se
encuentran en la sección 3 del artículo en el Anexo 3.B y la sección “Materiales y métodos” del artículo
en el Anexo 3.C, dónde se describe la arquitectura general AOGS (Automated Ontology Generator
System), que permite crear y enriquecer ontologías emergentes de forma autónoma, usando como
insumo el paradigma de Datos Enlazados. Se compone de tres capas (ver Figura 3.10):
 Knowledge Base Manager: se basa en las etapas (i) y (ii) del MEDAWEDE. En nuestro caso, se

encarga de gestionar y almacenar el conocimiento de AOGS.
 Knowledge Generator Manager: se basa en las etapas (iii), (iv) y (v) de MEDAWEDE. En nuestro

caso, controla el procesamiento del conocimiento de la capa anterior, y genera ontologías
extendidas con LD.

 Web Services Manager: se basa en la etapa (vi) de MEDAWEDE. En nuestro caso, se encarga de
recibir las peticiones web realizadas por los clientes a AOGS, por ejemplo, servicio de generación
de ontologías o servicio de gestión de fuentes de conocimiento.

Figura 3.9: Diagrama de secuencia para explotar datos.

3.2.1 Componentes de la capa Knowledge Base Manager

Los componentes descritos en esta sección permiten gestionar la base de conocimientos del sistema.

1) Ontological Database (OD): Este componente se encarga de almacenar y poner a disposición
todo el conocimiento que posee el sistema con el fin de generar ontologías para contextos
específicos. La OD almacena las clases, propiedades y relaciones de las diferentes ontologías.
Este componente es activado por el resto de componentes que necesitan gestionar la
información del sistema.

2) Source List (SL): Este componente muestra una lista de las ontologías que están disponibles en
la base de conocimiento del sistema. Este componente es activado por los servicios de
Knowledge Source Management (KSM).

3) Add Source (AddS): Se encarga de ampliar la base de conocimiento disponible en el sistema
para generar una ontología en un contexto específico. Este componente es activado por los
servicios KSM junto con la ontología a añadir al sistema.

4) Delete Source (DelS): Se encarga de reducir la base de conocimiento disponible en el sistema
para generar una ontología en un contexto específico. Este componente es activado por los
servicios KSM junto con el id de la ontología a eliminar del sistema.

3.2.2 Componentes de la capa Knowledge Generator Manager

En esta sección se describen los componentes que permiten generar la ontología del contexto solicitada
por el cliente.

Figura 3.10: Diagrama de componentes de nuestra arquitectura basada en
MEDAWEDE.

1) Base Ontology Creation (BOC): Este componente crea una ontología base con los conceptos
definidos como Términos de Búsqueda. Los Términos de Búsqueda son proporcionados por el
cliente para obtener una ontología de un dominio específico. Estos conceptos serán los nodos
raíz de la ontología a generar. En los siguientes componentes, estos conceptos base se
relacionarán con los nuevos conceptos seleccionados y a partir del enriquecimiento con Datos
Enlazados.

2) Similarity Search (SS): Este componente encuentra los posibles conceptos ontológicos a añadir
a la ontología base. Para ello, busca los sinónimos de los Términos de Búsqueda, y compara los
Términos de Búsqueda y sus sinónimos con los conceptos almacenados en el OD, extrayendo
las coincidencias. El resultado es una lista de los conceptos que coinciden con los términos de
búsqueda y sus sinónimos.

3) Ontological Alignment (OA): Este componente se encarga de la alineación de los conceptos
ontológicos obtenidos en SS, ponderando las relaciones que existen entre los conceptos
encontrados con los Términos de Búsqueda y sus sinónimos. La ponderación sigue las
siguientes reglas: i. Si un Término de Búsqueda coincide perfectamente con el concepto
encontrado, su puntuación es máxima (1). ii. Si un término de búsqueda está parcialmente
inmerso en el concepto encontrado, es decir, se presenta como sufijo o prefijo, su puntuación es
la mitad de la coincidencia perfecta (0,5). iii. Si un Término de Búsqueda está completamente
inmerso como subcadena del concepto encontrado, su puntuación será la cuarta parte de la
coincidencia perfecta (0,25). A continuación, castiga con 0 un concepto sin relación semántica
con los términos de búsqueda. Por último, selecciona los conceptos que cumplen el umbral de
aceptación proporcionado por el solicitante de la ontología. Este umbral define la severidad o
permisividad del filtrado de los conceptos seleccionados. El resultado de este componente es
una lista de conceptos que se integrarán en la ontología base.

4) Strong Merging (SM): Integra los conceptos seleccionados de las ontologías gestionadas por
OD. En este proceso, copia la lista de conceptos seleccionados dentro de la ontología base,
considerando las jerarquías conceptuales (nodos padre e hijo, propiedades y relaciones)
presentes en cada ontología fuente. El resultado es la ontología base poblada con el
conocimiento correspondiente al dominio solicitado.

5) Data Linking (DLi): Enriquece la ontología generada con Datos Enlazados, utilizando el
servicio DBpedia Spotlight (https://www.dbpedia-spotlight.org/), que proporciona una solución
basada en Datos Enlazados para relacionar palabras clave con identificadores de recursos
relacionados en el grafo de conocimiento de Dbpedia. Por último, los recursos encontrados se
vinculan a cada concepto de la ontología. Por ejemplo, al buscar «COVID», el servicio
devuelve http://dbpedia.org/resource/COVID-19. A continuación, esta respuesta se vincula al
concepto COVID de la ontología base.

6) Export Formats (EF): Se encarga de transformar la ontología enriquecida con Datos Enlazados
al formato requerido por la interfaz. Entre los formatos manejados actualmente se encuentran
JSON-LD, RDF/XML y N-TRIPLES.

3.2.3 Componentes de la capa Web Services Manager

A continuación se ofrece una visión general de los componentes que prestan los distintos servicios del
sistema.

1) Knowledge Source Management (KSM): Este componente se encarga de ofrecer servicios para
ampliar o reducir la base de conocimiento gestionada por el sistema.

2) Ontology Generation (OG): Este componente se encarga de activar el proceso de creación de
ontologías para un contexto específico. El resultado de este componente es la creación de una
ontología explotando el conocimiento ontológico disponible en el sistema y Datos Enlazados.
El servicio ofrecido recibe los parámetros de búsqueda como Términos de Búsqueda, formato
de generación de la ontología, entre otros.

3.2.4 Comportamiento de AOGS

Nuestro sistema presenta dos comportamientos principales: 1) Gestión del conocimiento y 2)
Generación del conocimiento. En esta sección se detalla cada uno de ellos.

1) Gestión del Conocimiento
Objetivo: listar, añadir o borrar las ontologías que se utilizan como fuente de conocimiento gestionado
por el sistema.

Descripción general: El proceso mostrado en la Tabla 3.2, comienza cuando el servicio web KSM
recibe una petición de gestión de fuente de conocimiento con sus parámetros requeridos (Paso 1).

Tabla 3.2: Macro-algoritmo de la gestión del conocimiento.

Entrada: Tipo de solicitud y sus parámetros

Proceso:
1. KSM procesa la solicitud.
2. KSM comprueba los parámetros de la solicitud.
3. El KSM activa el componente correspondiente al tipo de solicitud.
3.1. Si el tipo es listar, KSM invoca SL.
3.1.1. SL solicita el listado de ontologías a OD.
3.2. Si el tipo es añadir, KSM invoca a AddS con la ontología a añadir.
3.2.1. AddS solicita a OD que añada la ontología.
3.3. Si el tipo es eliminar, KSM invoca a DelS con el ID de la ontología que se va a eliminar.
3.3.1. DelS solicita al OD que borre el ID.

Salida: Solicitud procesada

En el paso 2, KSM verifica los parámetros en función del tipo de solicitud. En el caso de listar, no
requiere parámetros adicionales. En el caso de añadir, el parámetro recibido es una ontología que debe
añadirse al sistema. En el caso de eliminar, el parámetro recibido es un ID de la ontología que se desea
eliminar del sistema. A continuación, KSM activa el componente correspondiente al tipo de solicitud
(Paso 3). Si se trata de listar las ontologías que posee el sistema, KSM invoca a SL (Paso 3.1).

A continuación, SL solicita a OD la lista de ontologías (3.1.1). Si hay que añadir una ontología al
sistema, KSM invoca a AddS (paso 3.2). A continuación, AddS solicita a OD que añada la ontología al
sistema (3.2.1). Si se trata de eliminar una ontología del sistema, KSM invoca a DelS (paso 3.3). A
continuación, DelS solicita a OD que elimine la ontología del sistema (3.3.1). Este proceso permite
mantener actualizados los conocimientos gestionados por el AOGS.

2) Generación del conocimiento
Objetivo: generar una ontología con Datos Enlazados y el conocimiento ontológico del sistema,
utilizando parámetros de búsqueda como términos de búsqueda, umbral de aceptación, entre otros.

Descripción general: La Tabla 3.3 presenta el proceso de Generación de Conocimiento, que comienza
cuando el servicio web OG recibe la solicitud de creación de una ontología con los parámetros de
generación (Paso 1). A continuación, BOC crea la ontología base y añade los Términos de Búsqueda
como nodos raíz (Paso 2). En el paso 3, genera una lista de sinónimos de los términos de búsqueda. A
continuación, SS compara los términos de búsqueda y sus sinónimos con los conceptos almacenados en
OD (paso 4).

Tabla 3.3: Macro-algoritmo de generación de conocimiento.

Entrada: Términos de Búsqueda, umbral de aceptación y formato de la ontología

Proceso:
1. La OG tramita la solicitud.
2. BOC crea la ontología base.
3. SS busca sinónimos de los Términos de Búsqueda.
4. SS compara los parámetros de búsqueda con el conocimiento en OD.
5. SS genera la lista de coincidencias con Términos de Búsqueda y sinónimos.
6. OA pondera los conceptos obtenidos en la lista de coincidencias.
7. OA filtra los conceptos que cumplen el umbral de aceptación suministrado.
8. OA genera la lista de conceptos seleccionados.
9. SM integra los conceptos seleccionados.
10. DLi enriquece la ontología con Datos Enlazados.
11. EF transforma la ontología al formato requerido

Salida: Ontología generada

A continuación, SS genera las listas de coincidencias con los términos de búsqueda y sus sinónimos
(paso 5). En el paso 6, OA pondera las relaciones existentes entre las listas de coincidencias con los
términos de búsqueda y sus sinónimos (véase la sección 3.2.2.3). Con las ponderaciones, OA filtra los
conceptos que cumplen el umbral de aceptación suministrado (Paso 7) y genera la lista de conceptos
seleccionados (Paso 8). Por último, SM integra los conceptos seleccionados en la ontología (paso 9).
Una vez construida la ontología, DLi procede a buscar y vincular cada concepto de la ontología con el
conocimiento disponible en la web utilizando el paradigma de Datos Enlazados (Paso 10). Como
último paso, EF transforma la ontología al formato requerido (Paso 11). El resultado de estos procesos
es una ontología enriquecida con Datos Enlazados que explota el conocimiento disponible en el
sistema.

3.2.5 Experimentación

Esta sección presenta un resumen extenso del caso de estudio del generador ontológico [54], enfocado
en el dominio del COVID-19, basado en la sección 4 del artículo en Anexo 3.B. Es importante destacar
que esta sección del anexo también aborda su aplicación en el dominio de la gestión energética.

En este caso de estudio se toma como fuente de conocimiento las ontologías del dominio COVID-19,
que es una enfermedad infecciosa causada por el virus SARS-CoV-2 [24]. La Tabla IV del Anexo 3.B
muestra las ontologías vinculadas a COVID-19 que se seleccionaron del repositorio de ontologías
https://bioportal.bioontology.org/ontologies.

AOGS activa su primer proceso, que es la Gestión del Conocimiento, este proceso gestiona la carga de
ontologías al sistema como fuentes de conocimiento para el proceso de Generación de Conocimiento.
Para ello, ejecuta el servicio web KSM con sus parámetros, proceso que se repite con cada ontología
que se añade al sistema. Posteriormente, el KSM recibe, procesa y ejecuta los módulos
correspondientes al tipo de petición recibida (ver pasos 1, 2 y 3 de la Tabla 3.2). En este caso, activa el
módulo AddS (ver paso 3.2 en la Tabla 3.2), que se encarga de añadir la ontología en OD del sistema
(ver paso 3.2.1 en la Tabla 3.2).

Luego, AOGS activa al proceso de Generación de Conocimiento, este proceso genera la ontología
usando como insumo los Datos Enlazados del sistema. Para ello, se ejecuta el servicio web OG pasando
como parámetros los Términos de Búsqueda, el formato de la ontología y el umbral de aceptación. Por
ejemplo, la Figura 3.11 indica que la ontología se generará en formato RDF/XML, con un umbral de
aceptación del 70%, y el área de interés de la nueva ontología es “COVID” y “test”.

El componente SS, utilizando los términos de búsqueda, obtiene sus sinónimos (véase el paso 3 de la
Tabla 3.3). Por ejemplo, para “COVID” se encontró “Coronavirus”, mientras que para “Test” se
encontraron varios sinónimos como “trial”, “exam”, “quiz”, entre otros. A continuación, realiza
consultas para obtener los conceptos ontológicos de las ontologías añadidas al sistema (véanse los
pasos 4 y 5 de la Tabla 3.3). Algunos de los posibles resultados son “Untested for COVID-19”,
“COVID-19 Diagnosis”, “Tested for 2019-nCov (Wuhan) infection”. Sin embargo, no todos los
conceptos acabarán poblando la ontología, ya que muchos de ellos no están semánticamente
relacionados con el dominio consultado. Por ejemplo, “intestine cancer”, “assay screened entity” y
“testis”, por lo que será necesario filtrar estos conceptos.

La figura 3.12 muestra algunas ponderaciones entre las listas de coincidencias (azul), y los términos de
búsqueda (verde oscuro) y sus sinónimos (verde claro) (véase el paso 6 de la tabla 3.3). Por ejemplo, la
comparación de “COVID” de la lista de coincidencias con “COVID” del término de búsqueda es
perfecta; por tanto, su puntuación será máxima (1).

Figura 3.11: Interfaz de generación.

En el caso del término de búsqueda “Test”, está parcialmente inmerso dentro del token “untest”, con un
sufijo añadido (en otros casos, puede presentarse como prefijo); por lo tanto, su puntuación es la mitad
de la coincidencia perfecta (0,5). En el tercer caso, el término buscado está completamente inmerso
como una subcadena del concepto presente en el listado (“Test” en “intestin”). En este caso, la
ponderación es una cuarta parte de la coincidencia perfecta (0,25) para castigar los posibles conceptos
sin relación semántica con la búsqueda. Así se hace para el resto de conceptos.

En resumen, un concepto cuya etiqueta sea “Tested for COVID-19” puntuará más alto que otro cuya
etiqueta sea “Study for COVID propagation”, ya que en el primer caso se hace referencia a “Test” y
“COVID” al mismo tiempo, mientras que en el segundo sólo se hace referencia a “COVID”. Tras la
ponderación, se eligen los conceptos que cumplen el umbral de aceptación definido (véase el paso 7 de
la Tabla 3.3). Para este caso, 70% es el umbral, y el resultado es una lista con los conceptos
seleccionados (véase la etapa 8 de la Tabla 3.3).

Con la ontología base integrada con los conceptos seleccionados (véase el paso 9 de la Tabla 3.3), se
utiliza el paradigma de Datos Enlazados para buscar conceptos que puedan ser equivalentes a los
conceptos de la ontología generada (véase el paso 10 de la Tabla 3.3), con el fin de crear nuevos
conceptos en la ontología con información externa. La Figura 3.13 muestra el vínculo entre el concepto
COVID de la ontología y el concepto COVID de DBpedia.

Figura 3.12: Ponderaciones entre los listados de
coincidencias (azul) y los términos de búsqueda
(verde oscuro) y sus sinónimos (verde claro).

Por último, la nueva ontología se transforma al formato requerido (véase el paso 11 de la Tabla 3.3), en
este caso, a RDF/XML (véase la Figura 3.14).

Figura 3.13: Vinculación de conceptos
ontológicos con fuentes externas de Datos
Enlazados.

Figura 3.14: Ontología generada y publicada en
formato RDF/XML.

4 Recomendador Híbrido Basado en Lógica
Descriptiva/Dialéctica y Datos Enlazados

En este capítulo se presenta un Sistema de Recomendación Híbrido (Hybrid Recommender System,
HRS) que combina la lógica descriptiva/dialéctica con Datos Enlazados [56]. Este HRS nace de las
ideas propuestas por Dos Santos et al. [46] y responde a la necesidad de resolver situaciones con
información inconsistente, es decir, estados de contradicción o ambigüedad, y de explotar la
información semántica proveniente de la web estructurada como los Datos Enlazados. La estructura del
capítulo es la siguiente: La sección 4.1, que se basa en la sección 4.1 del Anexo 4.A, presenta el diseño
arquitectónico nuestro HRS y detalla cada componente. La sección 4.2, en consonancia con la Sección
4.2 del Anexo 4.A, describe los algoritmos que implementan los componentes del HRS. La sección 4.3
ilustra un caso de estudio del HRS, basándose en la sección 5 del Anexo 4.A. Finalmente, la sección
4.4 explora el uso de esta arquitectura, incluyendo un análisis de uno de los fenómenos dialécticos en
las competencias (sección 4.4.1, basada en la sección Knowledge Model del Anexo 4.B), una
presentación de otros modelos dialécticos (sección 4.4.2, basada en la sección 3 del Anexo 4.C) y un
análisis general del potencial de la Lógica Dialéctica (sección 4.4.3).

4.1 Arquitectura del HRS

Esta sección ofrece un resumen extenso del trabajo presentado en [56], y los detalles se encuentran en
la sección 4.1 del Anexo 4.A. En dicho trabajo, se construye un HRS basado en las características de un
Sistema de Recomendador Inteligente, las cuales se describen a continuación [57]: (i) Fuentes de
Conocimiento: son las fuentes que proveen información sobre usuarios, contexto, recursos, entre otros.
En nuestro sistema, estará conformada principalmente por fuentes de Datos Enlazados, las cuales
proveen datos con información semántica; (ii) Adquisición de Conocimiento: se encarga de la
extracción y procesamiento de datos. En nuestro caso, generará consultas en SPARQL que permitan
identificar, filtrar y extraer la información disponible en las fuentes de Datos Enlazados para enriquecer
el modelo de conocimiento; (iii) Modelado de Conocimiento: se especifica el paradigma de
representación del conocimiento; para nuestro caso, se representa como Datos Enlazados y axiomas
basados en lógica descriptiva/dialéctica; (iv) Razonamiento y verificación: se implementan los
mecanismos de razonamiento, ofreciendo la capacidad de explotar el conocimiento e inferir
recomendaciones. En nuestro sistema, se utilizará un mecanismo híbrido, por un lado, se utiliza un
razonador de lógica descriptiva que permite explotar las fuentes de Datos Enlazados para enriquecer el
modelo de conocimiento, y por otro lado, se utiliza un razonador de Lógica Dialéctica que verifica el
modelo de conocimiento y evalúa las recomendaciones a través de los diferentes eventos dialécticos.

La Figura 4.1 muestra los componentes de nuestro HRS, distribuidos en dos grandes grupos: el primer
grupo está compuesto por los componentes que permiten razonar para extraer información o inferir
recomendaciones, incluso en presencia de inconsistencias o ambigüedades en el Problema o Consulta
(PoQ), o en los datos extraídos de los Datos Enlazados, llamados Reasoning Engines. El segundo
grupo, llamado Manager, está compuesto por los componentes encargados de gestionar todos los
procesos necesarios para llegar a una recomendación. Estos determinan cuándo y qué se debe explotar

de los Datos Enlazados, ya sea para enriquecer las ontologías o vocabularios del modelo de
razonamiento, o para enriquecer semánticamente los datos o recomendaciones encontradas.

4.1.1 Componentes del Grupo Reasoning Engines

Description Logic Engine (DeLE): Este motor es intrínseco a los Datos Enlazados, ya que tanto la
estructura semántica de los datos como los mecanismos de consulta (lectura, creación, actualización o
borrado de tripletes) se basan en lógica descriptiva. Además, el motor permite explotar diferentes
fuentes de datos, gracias a la técnica de Datos Enlazados que interconecta los datos a través de puntos
de acceso distribuidos o endpoint locales (para perfiles personales y contexto), o endpoint públicos
(endpoint de Dbpedia, endpoint de Wikidata, entre muchos otros). Este motor recibe una consulta
basada en tripletes y devuelve los datos encontrados como variables.

Dialetheic Logic Engine (DiLE): Este motor responde mediante consultas construidas como
conjeturas sobre los modelos descritos en lógica de primer orden, donde se detallan axiomas y sus
hechos, pudiendo detectar y razonar en estados de ambigüedad o inconsistencia, gracias a la capacidad
que ofrece la Lógica Dialéctica. Este motor recibe una consulta como conjetura y modelo, y retorna lo
inferido de la conjetura sobre el modelo.

4.1.2 Componentes del Grupo Manager

Vocabulary Manager (VM): se encarga de identificar y seleccionar los vocabularios y ontologías que
son necesarios para procesar las peticiones recibidas por el recomendador. El gestor busca hacer
coincidir los términos de la petición con las clases y propiedades del conocimiento que posee. Si este
objetivo no se logra, entonces se apoya en Query Manager para extraer nuevo conocimiento de las
fuentes de Datos Enlazados, que pueda enriquecer las ontologías o vocabularios del modelo de
razonamiento. Este componente toma los axiomas presentes en la entrada del PoQ y extrae los
predicados, ya que esos predicados son los conceptos que se necesitan identificar. Luego, esos

Figura 4.1: Diagrama de componentes de nuestro HRS.

predicados se comparan con la base de conocimiento, para determinar si se conocen los URIs que
identifican y se relacionan con los conceptos. Si no es así, se invoca el Query Manager para generar
consultas para los URIs que representan estos conceptos desconocidos (más en la Tabla 4.3).

Query Manager (QM): se encarga de preparar y generar las consultas necesarias para enriquecer o
recomendar la información.

 Por parte del DeLE, se generan consultas basadas en tripletas que explotan los datos contenidos
en las fuentes de Datos Enlazados, apoyándose en la Base de Conocimiento (Knowledge Base,
KB) de los vocabularios y ontologías manejados por el recomendador y las fuentes de Datos
Enlazados. En concreto, la consulta se construye a través de tres plantillas, según el tipo de
petición: (i) “Concept as URI” permite buscar la URI que representa un concepto. (ii) “Property
related to a Concept as URI” permite buscar la URI que representa una propiedad que está
relacionada con una URI de un concepto conocido.; y (iii) “Knowledge Extraction” permite
extraer todo el conocimiento disponible de una URI.

 Por parte del DiLE, se generan consultas basadas en conjeturas descritas en los axiomas del
PoQ, que permiten probar e inferir las recomendaciones, incluso si hay inconsistencia o
ambigüedad en el PoQ o en los datos. En concreto, se analiza cada axioma del PoQ y se extrae
el predicado que sigue a cada símbolo de implicación (=>), ya que formará parte de las
conjeturas que el HRS utilizará para probar el modelo y los datos.

Conversion Manager (ConM): Se encarga de preparar y generar las transformaciones de datos para
permitir el intercambio de información entre los diferentes razonadores que tiene el recomendador y la
información encontrada, necesarias para que los resultados de un razonador puedan ser utilizados por el
otro. Por ejemplo, para utilizar los datos generados por el DeLE con DiLE, se requiere transformar los
datos, ya que el DeLE devuelve una tabla inferida con los valores encontrados por cada variable
solicitada, y el DiLE necesita un modelo con los datos descritos como hechos en Lógica de Primer
Orden. Estas transformaciones se crean a partir del modelo de razonamiento, utilizando la base de
conocimiento que alcanzó VM y la consulta de extracción de conocimiento que genera QM. En
concreto, se realizan dos tipos de conversiones, el primer tipo convierte los datos de una variable o
concepto extraído de los Datos Enlazados. El segundo tipo convierte los datos de dos variables o
conceptos relacionados que se extrajeron de los Datos Enlazados.

Recommendation Manager (RM): Se encarga de fusionar y filtrar la información obtenida por los
razonadores, permitiendo recoger y entregar el conocimiento alcanzado por todos los mecanismos que
componen el recomendador. En concreto, RM solicita a ConM las conjeturas que permitirán validar el
modelo de razonamiento con los elementos extraídos a través de DeLE. A continuación, DiLE filtra las
recomendaciones; para ello, se detectan los eventos dialécticos utilizando las diferentes conjeturas.
Ahora, con las recomendaciones alcanzadas, se procede a evaluar el grado de cercanía de cada
recomendación al perfil del usuario. Esta evaluación consiste en sumar las características del perfil de
usuario que coinciden con la recomendación. Finalmente, las recomendaciones se ordenan de mayor a
menor, según el resultado de cada evaluación (más detalles en la Tabla 4.5).

Control Manager (CM): es el responsable de todas las decisiones del HRS, determinando cuándo y
cómo deben invocarse los gestores y razonadores en función de sus capacidades. Este gestor utiliza el
meta-razonamiento para tomar estas decisiones (más detalles en la Tabla 4.2). El meta-razonamiento
busca cumplir los siguientes objetivos: (i) verificar que el PoQ esté correctamente definido, probándolo
con DiLE (ver Tabla 4.2); (ii) identificar los conceptos presentes en el PoQ, buscándolos con DeLE

(ver Tabla 4.3); (iii) extraer el conocimiento asociado a los conceptos identificados en el PoQ,
extrayéndolos con DeLE (ver Tabla 4.4); (iv) verificar y filtrar las recomendaciones, usando DiLE (ver
Tabla 4.5); y (v) extraer el contenido relacionado con las recomendaciones, usando DeLE (ver Tabla
4.6).

4.2 Funcionamiento del HRS

Esta sección es un resumen extenso del trabajo presentado en la sección 4.2 del Anexo 4.A, dónde se
especifica el funcionamiento del HRS construido. En general, los pasos seguidos por el HRS pueden
verse en el Macro-Algoritmo de la Tabla 4.1. El proceso comienza cuando un usuario solicita una
recomendación, proporcionando la PoQ que desea resolver. Lo primero que hace CM es ejecutar la
entrada con DiLE, determinando si los axiomas están correctamente descritos (Paso 1). Si no son
correctos, el proceso se detiene (Paso 1.1). En caso de que sea correcta, entonces el CM activa una serie
de procesos que permiten incorporar conocimiento de los Datos Enlazados y encontrar posibles
recomendaciones (Paso 2). En el paso 2.1, se determina si existen ontologías y/o vocabularios que
permitan identificar los términos utilizados por el PoQ. En el paso 2.2, se extrae de los Datos Enlazados
la información relativa a los términos identificados en el paso anterior. Esto permite el enriquecimiento
con conocimiento de las posibles recomendaciones que se alcanzarán. En el paso 2.3, se verifican las
inconsistencias y/o ambigüedades presentes en los datos recogidos para el PoQ, y se obtienen las
recomendaciones encontradas. En el paso 2.4, estas recomendaciones se enriquecen con el
conocimiento relacionado buscado a través de las fuentes de Datos Enlazados. Por último, se entregan
las recomendaciones enriquecidas.

Tabla 4.1: Macro-algoritmo de nuestro HRS.

Entrada: PoQ

Proceso:
1. El CM verifica la PoQ con el DiLE.
1.1. Si no es correcto el PoQ, se detiene el proceso de recomendación.
2. CM activa cada proceso.
2.1. Proceso: Identificación de URI utilizando Datos Enlazados (véase la Tabla 4.2).
2.2. Proceso: Extracción de Conocimiento utilizando Datos Enlazados (véase la Tabla 4.3).
2.3. Proceso: Verificación y Filtrado de Recomendaciones utilizando Datos Enlazados (Tabla 4.4).
2.4. Proceso: Extracción de Contenidos Relacionados a las Recomendaciones utilizando Datos Enlazados (Tabla 4.5).

Salida: Recomendaciones enriquecidas

A continuación se describen con más detalle los distintos procesos:

4.2.1 Identificación de URI utilizando Datos Enlazados

Objetivo: identificar los términos o conceptos utilizados en el PoQ, buscando URIs de una ontología
y/o vocabulario que los represente.

Descripción general: El proceso mostrado en la Tabla 4.2, comienza cuando el CM recibe la PoQ y
activa la VM para reconocer las características de dicha PoQ (Paso 1). En el paso 2, la VM verifica si
los Términos o Conceptos (ToC) presentes en el PoQ están relacionados con un vocabulario u ontología
conocida por el HRS en su KB. Esta relación se identifica a través de un URI, que permite extraer
nuevo conocimiento de las fuentes de Datos Enlazados. Por ejemplo, una enfermedad se representa
mediante el URI http://dbpedia.org/ontology/disease. Para ello, el paso 2.1 extrae cada ToC en PoQ
(véase el componente VM). A continuación, se comprueba cada ToC extraído de PoQ (paso 2.2). Si
HRS no conoce la ToC en su KB, VM debe encontrar un URI que represente la ToC (paso 2.2.1). En
este caso, VM activa QM (Paso 2.2.1.1), de modo que QM prepara consultas para encontrar un URI a
través de DeLE que represente el ToC (Paso 2.2.1.2). Ejemplos de este proceso se describen en el
componente QM, concretamente, en los tipos de consulta Concept as URI y Property related to a
Concept as URI. En el paso 2.2.1.3, VM ejecuta DeLE con las consultas recibidas por QM, lo que le
permite encontrar un URI que represente ToC. Entonces, ToC, con su URI, es añadido a KB como un
concepto identificado por HRS (Paso 2.2.1.4). Todos estos URIs identificados en este proceso
permitirán la extracción de conocimiento para el siguiente proceso.

Tabla 4.2: Macro-algoritmo de identificación de URIs mediante Datos Enlazados.

Entrada: PoQ

Proceso:
1. El CM activa VM.
2. VM comprueba si ToC está en KB:
2.1. VM extrae los ToC presentes en el PoQ.
2.2. Para cada ToC del PoQ:
2.2.1. Si ToC no está Identificado, requiere actualización de KB:
2.2.1.1. VM activa QM.
2.2.1.2. QM prepara las consultas para extraer las URI.
2.2.1.3. VM invoca DeLE con las consultas generadas.
2.2.1.4. Se añade la ToC a la KB.

Salida: KB actualizados

4.2.2 Extracción de Conocimiento utilizando Datos Enlazados

Objetivo: extraer la información que debe recomendarse utilizando las URIs como punto de
correspondencia entre las fuentes de Datos Enlazados y ToC.

Descripción general: La Tabla 4.3 presenta el proceso de Extracción de Conocimiento, que comienza
cuando el CM ha identificado cada ToC con sus respectivas URIs, y necesita extraer información de las
fuentes de Datos Enlazados para encontrar posibles recomendaciones (Paso 1). El CM lleva a cabo esta
tarea activando QM (Paso 1.1), de forma que QM prepara las consultas para extraer información de los
Datos Enlazados asociados a las PoQ utilizando KB (Paso 1.2). Se realiza de la siguiente forma:
utilizando los URIs conocidos del proceso anterior y la tripleta para el tipo de consulta “Knowledge
Extraction” (ver Componente QM), ahora bien, en los casos en que dos conceptos están relacionados,
sustituye ?URI_CONCEPT y ?URI_PROPERTY por los URIs respectivos. En los casos en que un
concepto no está relacionado con otros, solo se sustituye ?URI_CONCEPT. Teniendo las consultas, el

CM invoca el DeLE y recoge información de fuentes, como la preferencia del usuario, el contexto y
otros conocimientos asociados al PoQ (Pasos 1.3 y 1.4).

Tabla 4.3: Macro-algoritmo de extracción de conocimiento mediante Datos Enlazados.

Entrada: PoQ

Proceso:
1. CM necesita extraer información para el PoQ utilizando KB.
1.1. CM activa QM.
1.2. QM prepara las consultas para extraer la información asociada al PoQ utilizando la KB.
1.3. CM invoca DeLE con consultas a la fuente local (conocimiento del contexto y preferencias del usuario).
1.4. CM invoca DeLE con consultas a otras fuentes (conocimiento general).

Salida: Conocimientos Extraídos

4.2.3 Verificación y Filtrado de Recomendaciones utilizando Datos Enlazados

Objetivo: verificar las inconsistencias y/o ambigüedades presentes en los datos recogidos y en el
modelo, y generar recomendaciones.

Descripción general: El proceso comienza cuando se ha identificado la ToC y se han extraído todos los
datos utilizando el paradigma de Datos Enlazados (Tabla 4.4). Entonces, el CM activa el RM para
generar las recomendaciones (Paso 1). El RM lleva a cabo una serie de procesos para conseguir las
recomendaciones. El primero es convertir los datos recogidos por DeLE en el proceso anterior a la
estructura recibida por DiLE. Para ello, se activa la tarea ConM (Paso 2). En el Paso 2.1, ConM realiza
esta tarea mediante dos tipos de conversiones, que se describen en el componente ConM. La segunda es
activar QM (Paso 3) para generar las consultas basadas en el modelo que recibe DiLE. Para ello, QM,
en el Paso 3.1, debe entregar las consultas basadas en conjeturas según los axiomas presentes en PoQ.
Este proceso se describe en el componente QM. Por último, RM ejecuta DiLE con PoQ, los datos
transformados por ConM y las distintas conjeturas entregadas por QM (Paso 4). DiLE comprueba los
datos y las conjeturas (paso 4.1). Con los resultados proporcionados por DiLE, las recomendaciones se
filtran (paso 4.2) y se clasifican (paso 4.3), como se describe en el componente RM.

Tabla 4.4: Macro-algoritmo de verificación y filtrado de recomendaciones mediante Datos Enlazados.

Entrada: PoQ y los Conocimientos Extraídos

Proceso:
1. CM activa RM para buscar recomendaciones.
2. RM activa ConM.
2.1. ConM convierte el Conocimiento Extraído según la necesidad del DiLE.
3. RM activa QM.
3.1. QM genera las consultas según el PoQ utilizando KB.
4. RM busca recomendaciones ejecutando DiLE.
4.1. RM verifica los datos.
4.2. RM filtra los resultados.
4.3. RM ordena los resultados.

Salida: Recomendaciones

4.2.4 Extracción de Contenidos Relacionados a las Recomendaciones utilizando
Datos Enlazados

Objetivo: enriquecer las recomendaciones con contenidos relacionados extraídos a partir de los Datos
Enlazados.

Descripción general: La tabla 4.5 muestra el proceso de enriquecimiento de las recomendaciones. En
el paso 1, el CM activa a RM para que busque información relacionada con las recomendaciones
alcanzadas en el proceso anterior (Paso 1). Para alcanzar este objetivo, el RM activa a QM (Paso 2),
que se encargará de generar las consultas necesarias para extraer de las fuentes de Datos Enlazados, los
contenidos relacionados con las recomendaciones (Paso 2.1). Se realiza utilizando las URIs de las
recomendaciones alcanzadas del proceso anterior, y la tripleta para el tipo de consulta “Knowledge
Extraction” (ver componente QM), sustituyendo ?URI_CONCEPT por la URI de cada recomendación
alcanzada. Cuando se utiliza este URI, se evita la ambigüedad con respecto a las recomendaciones
alcanzadas en procesos anteriores. A continuación, RM invoca a DeLE utilizando las consultas
generadas por QM (Paso 3). Por último, el contenido relacionado extraído de las fuentes de Datos
Enlazados se vincula a las recomendaciones alcanzadas en el proceso anterior, y se entrega como
resultado final (Paso 4).

Tabla 4.5: Macro-algoritmo de extracción de contenidos relacionados con las recomendaciones
mediante Datos Enlazados.

Entrada: Recomendaciones

Proceso:
1. CM activa RM para enriquecer las recomendaciones.
2. RM activa QM.
2.1. QM genera consultas de acuerdo con las recomendaciones.
3. RM activa DeLE con las consultas.
4. RM fusiona y devuelve las recomendaciones enriquecidas.

Salida: Recomendaciones Enriquecidas

4.3 Experimentación

Esta sección presenta un caso práctico, que es un resumen extenso del trabajo presentado en la sección
5 del Anexo 4.A, en el que se detalla el comportamiento de nuestro sistema. Además, se muestra cómo
se explotarían los recursos de los Datos Enlazados dentro del recomendador. La Figura 4.2 muestra las
fuentes de entrada para nuestro HRS en este caso práctico. Además, se lleva a cabo la siguiente
suposición: los doctores y/o los sensores corporales solo detectan los diferentes síntomas que puede
presentar un usuario, y dicha información se almacena en un repositorio local de Datos Enlazados, que
se implementa con OpenLink Virtuoso (Open-Source Edition). Por otro lado, existen datos asociados a
tipos de enfermedades conocidas, así como sus síntomas, tratamientos y causas, entre otros. Esta

información se extrae del repositorio de Datos Enlazados externo, llamado Live-DBpedia, que es una
fuente con datos actualizados, ya que recupera inmediatamente todos los cambios de Wikipedia.

Además, también necesita PoQ como entrada, que es el problema o consulta a resolver. Esta entrada
será recibida por el CM, que se encarga de controlar todo el proceso llevado a cabo por el HRS. En este
caso, busca una PoQ que represente una situación de Lógica Dialéctica denominada Discurso Ficticio.
Para ello, busca determinar si una persona está enferma, de acuerdo con ciertos supuestos. En concreto,
nuestro sistema debe gestionar los síntomas que pueden o no asociarse a una enfermedad, los conflictos
entre los síntomas proporcionados por cada doctor o sensor, la falta de información, la inconsistencia
de los datos, etc. Así, nuestro sistema permite gestionar las diferentes ambigüedades entre las opiniones
de los doctores y/o la información captada por los sensores. De esta forma, se compone de cuatro
axiomas que describen el problema, y dos conjeturas que representan las preguntas a resolver (ver
Figura 3 del Anexo 4.A del artículo [56]):

1. Enfermo de D porque U presenta alguno de los síntomas S, según el Doctor Dr (ver axioma
diseaseDoctor). Este axioma determina si alguno de los S síntomas es detectado por el Dr
(symptomDoctor) en el usuario U. A continuación, se comprueba si el síntoma detectado está asociado
a la enfermedad D (isSymtom).
2. Enfermo de D según la opinión del Doctor Dr, porque U presenta alguno de los síntomas S (ver
axioma sickDoctor). Este axioma determina si existe una enfermedad D en el usuario U, según la
opinión del doctor Dr (diseaseDoctor). Este axioma se basa en el axioma 1, porque el doctor Dr detecta
cualquiera de los S síntomas.
3. Enfermo con D porque U presenta alguno de los síntomas S, según los doctores Dr1 y Dr2 (ver
axioma diseaseDoctors). Este axioma también se basa en el axioma 1. Realiza una doble comprobación
de las opiniones de los doctores sobre los síntomas, de forma que determina si la enfermedad D está
presente en el usuario U basándose en estas opiniones de los doctores Dr1 y Dr2.
4. Enfermo según la opinión de los doctores Dr1 y Dr2, porque U presenta alguno de los síntomas S
(ver axioma sickDoctors). Este axioma se basa en los axiomas 2 y 3, y determina si existe una
enfermedad D en el usuario U, según las opiniones de los doctores Dr1 y Dr2 (diseaseDoctors).
5. Conjetura i: sickDoctors. El User_A está enfermo según la opinión del doctor_A y del doctor_B.

Figura 4.2: Caso de estudio del HRS.

6. Conjetura ii: diseaseDoctors. El User_A está enfermo de D según la opinión del doctor_A y del
doctor_B. D pertenece al conjunto de enfermedades disponibles en la base de conocimientos.

Por último, el HRS con las entradas definidas está listo para iniciar la extracción del conocimiento
necesario para razonar y hacer sus recomendaciones.

Estos procesos se muestran a continuación

4.3.1 Identificación de URIs mediante Datos Enlazados

Este proceso muestra cómo la HRS identifica las ToC presentes en la entrada PoQ, y sus relaciones.
Para ello, intenta asociar cada ToC a una URI que la represente (véase el macro-algoritmo de la Tabla
4.3). En este caso, se asume que la base de conocimiento del HRS conoce el ToC del usuario y del
doctor, y las relaciones entre ellos, usando solo el vocabulario FOAF (ver Tabla 4.6).

Tabla 4.6: Base de conocimientos HRS sobre los ToC.

ToC URI

user foaf:Person

doctor foaf:Person

opinionDoctor foaf:Document

publications foaf:publications

maker foaf:maker

Subject Property Object

user publications opinionDoctor

opinionDoctor maker Doctor

Nota: foaf: http://xmlns.com/foaf/0.1/.

El proceso comienza cuando VM es activada por CM para identificar la ToC (véase el paso 1 en la
Tabla 4.2). A continuación, VM obtiene los predicados disease, isSymptom y symptomDoctor, y con
ellos extrae los ToC disease, symptom y doctor (paso 2.1 en la Tabla 4.2). Si no identifica los ToC
disease y symptoms, y la relación entre ellos (paso 2.2.1 en la Tabla 4.2). VM resuelve este problema
con la invocación a QM para que prepare consultas para extraer información de los Datos Enlazados a
través del DeLE (paso 2.2.1.1 en la Tabla 4.2). De esta forma, para cada ToC no identificada, se busca
una ontología que la describa. La Figura 4.3 muestra una consulta definida por QM (paso 2.2.1.2 en la
Tabla 4.2), un proceso que se describió previamente en el componente QM, para extraer el URI. Esta
consulta busca una ontología para la enfermedad ToC que esté contenida en la fuente de Datos
Enlazados Live-DBpedia, obteniendo como resultado el URI para representar enfermedades:
“http://dbpedia.org/ontology/disease” (paso 2.2.1.3 en la Tabla 4.2).

Por último, VM utiliza técnicas de Datos Enlazados y la información contenida en las fuentes de los
Datos Enlazados (paso 2.2.1.4 en la Tabla 4.2), para identificar y relacionar los términos de la entrada
PoQ (véase la Tabla 4.7).

Tabla 4.7: Nuevos términos o conceptos identificados y relacionados con sus URIs mediante Datos
Enlazados.

ToC URI

disease dbo:disease

symptom dbo:symptom

isSymptom dbo:symptom

Subject Property Object

disease isSymptom symptom

opinionDoctor isSymptom symptom

Nota: dbo: http://dbpedia.org/ontology/.

Los procesos descritos en esta sección están automatizados en Python. El primer proceso (componente
VM) extrae los predicados de los axiomas descritos en PoQ. Esos predicados se transforman en ToC,
que son los términos que se buscarán en la fuente los Datos Enlazados. El segundo proceso utiliza las
plantillas descritas en QM como “Concept as URI” o “Property related to a Concept as URI”, donde las
palabras CONCEPT o PROPERTY se sustituyen por el ToC que necesita identificar su URI. A
continuación, la consulta de búsqueda se ejecuta en el punto final de la fuente LOD (por ejemplo,
http://live.dbpedia.org/sparql). Este proceso se repite con todos los ToC que necesitan ser identificados,
y si alguno de estos ToC no está asociado a un URI, entonces el sistema detiene su ejecución e indica el
problema.

4.3.2 Extracción de conocimientos mediante Datos Enlazados

En este caso, extrae información de las fuentes de Datos Enlazados para enriquecer el conocimiento
sobre el ToC identificado a partir de la entrada PoQ (ver macro-algoritmo en la Tabla 4.3). Este proceso
comienza cuando CM activa QM para generar dos consultas (pasos 1.1 y 1.2 en la Tabla 4.3), estas

Figura 4.3: Consulta para encontrar una ontología para los
términos o conceptos: disease.

consultas se generan siguiendo el proceso descrito en el componente QM para extraer el conocimiento.
Por un lado, genera una consulta que extrae de la fuente local de Datos Enlazados los síntomas
detectados en el user_A por doctores o sensores (Figura 4.4).

Por otro lado, genera una consulta que extrae una lista de enfermedades con sus síntomas, a partir de la
fuente Live-Dbpedia de los Datos Enlazados (véase la Figura 4.5).

Por último, CM ejecuta las consultas (pasos 1.3 y 1.4 de la Tabla 4.3). La Tabla 4.8 muestra una
pequeña parte de los datos extraídos sobre las enfermedades, con sus síntomas.

Tabla 4.8: Enfermedades con sus síntomas extraídos de Datos Enlazados.

Enfermedad Síntoma

dbpedia_Volvulus dbpedia_Bloating

dbpedia_Volvulus dbpedia_Constipation

dbpedia_Zika_fever dbpedia_Conjunctivitis

dbpedia_Zika_fever dbpedia_Fever

Este proceso se automatiza en Python, para lo cual utiliza la plantilla descrita en QM “Knowledge
Extraction”, donde sustituye la palabra URI_PROPERTY por la URI del ToC que necesita extraer el
conocimiento. A continuación, procede a ejecutar la consulta de búsqueda en el endpoint de la fuente

Figura 4.4: Consulta para extraer los síntomas detectados
en el user_A.

Figura 4.5: Consulta que genera la lista de enfermedades y sus
síntomas.

LOD (por ejemplo, http://live.dbpedia.org/sparql). Este proceso se repite con todos los ToC que
necesitan extraer conocimiento.

4.3.3 Verificación y filtrado de recomendaciones mediante Datos Enlazados

Este proceso verifica las incoherencias y/o ambigüedades de los datos extraídos, y los filtra basándose
en los eventos dialécticos encontrados por DiLE (véase el macroalgoritmo del Cuadro 4.4). Sin
embargo, para lograr este objetivo, es necesario activar ConM y QM. ConM (paso 2.1 en la Tabla 4.4)
transforma los datos extraídos por DeLE (véase la Tabla 4.8) en especificaciones DiLE, basadas en
axiomas y hechos. Este proceso de transformación se ha explicado en el componente ConM. La Figura
4.6 muestra parte del resultado de la conversión de las enfermedades y sus síntomas, donde el axioma
isSymptom_type representa la relación entre enfermedad y síntoma, y el resto son los hechos que
representan los datos extraídos.

La Figura 4.7 muestra las conjeturas extraídas del PoQ por el QM (paso 3.1 en la Tabla 4.4). Con estas
conjeturas, DiLE podrá razonar en el siguiente paso con el modelo y sus datos, permitiendo filtrar las
recomendaciones.

Ahora, el RM puede invocar al DiLE para verificar y filtrar las recomendaciones (paso 4 de la Tabla
4.4). En el caso de la conjetura I (véase la figura 4.8), DiLE determina que el user_A está enfermo
basándose en la opinión del doctor_A y del doctor_B. En el caso de la conjetura II (ver Figura 4.8),
DiLE comprueba cada enfermedad (variando el valor de D en la conjetura II) que tiene en la base de
conocimiento, para verificar y filtrar las enfermedades a recomendar. La Figura 4.8 muestra la

Figura 4.6: Información sobre enfermedades y sus síntomas convertida para el motor de Lógica
Dialéctica.

Figura 4.7: Conjeturas para verificar y filtrar los datos.

verificación de dos enfermedades (dbpedia_Zika_fever y dbpedia_Volvulus) con la conjetura ii. Para
dbpedia_Zika_fever DiLE determina que es una enfermedad a recomendar (YES), ya que en ambas los
doctores determinan que existen síntomas asociados a la enfermedad. Para dbpedia_Volvulus DiLE
determina que no es una enfermedad para recomendar (NO), ya que solo el doctor_B opinó que tiene
síntomas asociados a esa enfermedad.

Por último, la Tabla 4.9 muestra el resultado obtenido, después de que DiLE filtrara y clasificara las
enfermedades recomendadas, es decir, los casos que dieron YES con la conjetura II.

Tabla 4.9: Recomendación gracias al motor lógico dialéctico.

Recomendación Ranking

dbpedia_Zika_fever 3

dbpedia_Chikungunya 2

dbpedia_Measles 2

dbpedia_Rheumatic_fever 2

dbpedia_Trichinosis 2

Los procesos descritos en esta sección están automatizados en Python. Son los procesos más complejos
y constituyen el núcleo del HRS. El primer proceso (componente ConM) transforma las propiedades
enriquecidas a axioma; en este caso particular, la propiedad isSymptom (ver PoQ en el caso de
estudio), que tiene asociados dos conceptos: disease y symptom (conceptos que se obtuvieron usando la
URI_PROPERTY en la sección anterior), quedando de la siguiente forma: isSymptom(disease,
symptom). El segundo proceso ejecuta el razonador JGRM3 con la información contenida en PoQ y las
propiedades enriquecidas transformadas en axiomas. Finalmente, los ítems recomendados por el
razonador se almacenan en una lista y se ordenan por su ranking.

Figura 4.8: Comparación del resultado de dos conjeturas con respecto a los datos.

4.3.4 Extracción de contenidos relacionados con las recomendaciones mediante
Datos Enlazados

En este caso, se extrae nueva información de las fuentes de Datos Enlazados relacionada con el URI
que representa cada enfermedad alcanzada como recomendación (véase el macro-algoritmo en la Tabla
4.5). Para ello, RM activa QM para generar una consulta que permita extraer dicha información (paso 2
en la Tabla 4.5). Esta consulta se genera siguiendo el proceso descrito en el componente QM para
extraer conocimiento. La Figura 4.9 muestra la consulta que busca y extrae todo el contenido
relacionado con el URI que identifica a la Fiebre Zika, como síntomas, tratamientos, causa, entre otros
(paso 2.1 en la Tabla 4.5).

RM recoge toda la información extraída con la consulta anterior de Fiebre Zika (pasos 3 y 4 de la Tabla
4.5), y la asocia al URI de dicha enfermedad (ver Tabla 4.10). Este proceso de extracción y asociación
se repite con cada una de las enfermedades recomendadas por el HRS.

Figura 4.9: Consulta para extraer datos asociados a Zika_fever.

Tabla 4.10: Extracción de Datos Enlazados sobre la Fiebre Zika.

Enfermedad Propiedad Valor

dbpedia_Zika_fever

Duration Less than a week

Deaths None during the initial infection

Prevention Decreasing mosquito bites, condoms

Diagnosis Testing blood, urine, or saliva for viral RNA or blood for antibodies

Complications During pregnancy can cause microcephaly, Guillain-Barré syndrome

Symptom

Conjunctivitis

Fever

Maculopapular_rash

Arthralgia

Differential
diagnosis

Leptospirosis

Measles

Malaria

Chikungunya

Dengue

Treatment Supportive_care

Por último, el RM entrega al usuario toda la información recopilada.

Además, este proceso se automatiza en Python a partir de la plantilla descrita en QM «Knowledge
Extraction», para lo cual sustituye la palabra URI_CONCEPT por la URI del elemento recomendado
por el sistema. A continuación, procede a ejecutar la consulta de búsqueda en el endpoint de la fuente
LOD (por ejemplo, http://live.dbpedia.org/sparql). Este proceso se repite con todos los elementos
recomendados.

4.3.5 Análisis y Validación del Experimento

En el experimento, se muestra cómo el HRS orquesta a los razonadores y gestores para extraer y
procesar el conocimiento obtenido de los Datos Enlazados, y responder así a las necesidades de
recomendación considerando los estados de ambigüedad o inconsistencia. En concreto, se describe
cómo se identifican los conceptos asociados a PoQ (ver Sección 4.3.1), que luego se utilizan para
extraer información de las fuentes de Datos Enlazados (ver Sección 4.3.2). Teniendo todo el
conocimiento necesario para razonar, se procesa con el razonador de Datos Enlazados que identifica los
casos ambiguos, y llega a las recomendaciones basadas en las preferencias de cada usuario (ver Sección
4.3.3). Por último, se extrae de los Datos Enlazados el contenido relacionado con cada recomendación
alcanzada (ver Sección 4.3.4). En cada proceso se detalla el comportamiento de los algoritmos
ejecutados por el HRS, para llegar a las recomendaciones.

En [56] se amplía toda la validación de este experimento, dónde se analiza el comportamiento de
nuestro HRS y se evalúan las recomendaciones conseguidas utilizando la información extraída de los

Datos Enlazados. En general, se presenta el análisis del proceso en tres pasos: 1. Descripción general
de los datos extraídos de las fuentes de Datos Enlazados con DeLE. 2. Recomendaciones alcanzadas
con los eventos dialécticos detectados por DiLE. 3. Evaluación de las recomendaciones alcanzadas
mediante el mecanismo de razonamiento híbrido. Además, se presenta un análisis comparativo tanto
cualitativo como cuantitativo. Dónde todos los recomendadores utilizan la lógica descriptiva como
mecanismo intrínseco para la explotación de los Datos Enlazados, y con respecto a la resolución de las
ambigüedades y/o incoherencias, solo nuestro trabajo tiene esta capacidad. En nuestro enfoque,
utilizamos un motor de Lógica Dialéctica basado en la lógica RM3, que permite razonar en los estados
de ambigüedades o inconsistencias. Otro detalle está relacionado con la extracción y enriquecimiento,
todos los recomendadores consideran el uso de Datos Enlazados como fuente de conocimiento, por su
variedad y semántica, ya sea para caracterizar los elementos a recomendar y/o los perfiles de usuario.
Sin embargo, solo un trabajo y nuestra propuesta aprovechan el paradigma de los Datos Enlazados para
ofrecer información complementaria extraída de las mismas fuentes de Datos Enlazados, permitiendo
ampliar la información que se presenta a los usuarios.

4.4 Aplicaciones

El uso de este tipo de arquitectura se extiende a muchos contextos como: i. Recomendación de
Productos: manejar situaciones donde los consumidores tienen preferencias contradictorias o cuando
hay información conflictiva sobre los productos. ii. Recomendación de Viajes: cuando hay información
contradictoria sobre los destinos o servicios turísticos. iii. Recomendación Educativa: manejar
situaciones donde los estudiantes tienen diferentes estilos de aprendizaje o cuando hay información
contradictoria sobre los recursos educativos. iv. Otros: para cualquier contexto donde la información
sea compleja, contradictoria o ambigua, y donde se necesite un razonamiento sofisticado para llegar a
recomendaciones precisas y útiles. En este caso particular, nos centramos en la aplicación de la Lógica
Dialéctica para analizar la ambigüedad en las competencias profesionales presentes en los textos
digitales, como páginas web y redes sociales [58, 59] (Anexo 4.B y 4.C). La dificulta de este problema
radica en comprender el significado real de una competencia en los perfiles profesionales digitales, ya
que la interpretación puede variar según el conocimiento y la percepción del editor. Esto da lugar a
inconsistencias y ambigüedades en la descripción de las competencias, lo que dificulta la identificación
precisa de los conocimientos y habilidades necesarias para el diseño de programas de estudio
universitarios y otros procesos de gestión de competencias.

4.4.1 Fenómenos dialécticos en las competencias (Knowledge Model)

Esta sección presenta un resumen extenso del trabajo presentado en la sección Knowledge Model del
Anexo 4.B, dónde se muestran diferentes modelos dialécticos que contiene hipótesis que corresponden
a los cinco fenómenos dialécticos [58]: vaguedad, declaraciones contingentes sobre el futuro, discurso
ficticio, fallo de una presuposición y razonamiento contrafáctico. Aplicamos las descripciones de cada
axioma sobre los términos de competencia, conocimiento y habilidad, pertenecientes a documentos de
una colección de perfiles analizados por expertos [60]. Estos términos pertenecientes a la población
ontológica del modelo Competencias Ontológicas, siguiendo un método desarrollado en [61], con el

apoyo de bases de conocimiento de definiciones de conocimiento y habilidades: DISCO II (para
conocimiento), BLOOM (para habilidad) [61].

En las secciones siguientes, para cada fenómeno dialéctico, analizamos primero los axiomas utilizando
ejemplos de términos. Luego, presentamos la descripción en RM3, estructurada en tres componentes:
axiomas, que corresponden a las reglas dialécticas que los definen; hechos, que son las entradas al
modelo a partir de las instancias extraídas de los perfiles digitales académicos o profesionales; y
conjeturas, que se activan durante el razonamiento para realizar la interpretación de los perfiles
digitales académicos o profesionales [10].

4.4.1.1Vaguedad

La vaguedad corresponde a una falta de claridad, precisión o exactitud en el lenguaje natural. Los
patrones lingüísticos de las frases nominales y verbales que identifican las competencias de habilidades
y conocimientos pueden ser los mismos (homónimos). La Tabla 1 muestra tres ejemplos de la
ambivalencia de estos patrones, que se consideran frases nominales de la forma NC-SP-NC y NC-SP-
NC-AQ, que representan el componente de conocimiento. Sin embargo, estos términos pueden
interpretarse como una habilidad (Java expert y Hardware knowledge) o una competencia (Software
development) [61]. De este modo, la estructura lingüística de las frases nominales es ambivalente,
según la interpretación que el redactor haga de conocimiento y habilidad.

Tabla 4.11: Patrones lingüísticos de vaguedad.

Término Patrón Lingüístico Interpretación según el patrón Interpretación del editor

Hardware knowledge NC-SP-NC Conocimiento Habilidad

Java expert NC-SP-NC Conocimiento Habilidad

Software development NC-SP-NC Conocimiento Competencia

En particular, proponemos el siguiente axioma para los problemas de vaguedad explicados en la Tabla
4.11:

Si (el término T tiene un patrón P como conocimiento) y (P se interpreta como Habilidad (C1) o
Competencia (C2)), entonces (T tiene un patrón ambivalente).

La Tabla 4.12 muestra el axioma en formato RM3 (Lógica Dialéctica). Como se puede observar, el
axioma “hasAmbivalentPattern” establece la relación entre los patrones lingüísticos de los términos,
dependiendo de si T (término) tiene un patrón P que representa conocimiento, pero que, cuando se
interpreta es diferente (como habilidad (C1) o competencia (C2)), por lo que existe una ambivalencia.
Así, aunque el patrón lingüístico del término indica una frase nominal que corresponde a conocimiento,
el término se interpreta como habilidad o competencia.

Tabla 4.12: Axiomas de vaguedad.

Problema: Si (el término T tiene un patrón P como conocimiento) y (P se interpreta como Habilidad (C1) o
Competencia (C2)), entonces (T tiene un patrón ambivalente).

Axiomas fof(hasAmbivalentPattern,axiom,(
 ! [T,P,C1,C2] : (
 (hasPattern(T, P) & isInterpretedAs(T, C1) & isInterpretedAs(P, C2) &
 isDifferent(C1,P) & isDifferent(C2,P))
 => hasAmbivalentPattern(T, P)
)
)).

Hechos fof(hasPattern1, axiom, hasPattern(hardware_knowledge, nc_sp_nc)).
fof(isInterpretedAs1, axiom, isInterpretedAs (hardware_knowledge, competence)).
fof(isInterpretedAs2, axiom, isInterpretedAs(hardware_knowledge, skill)).
fof(isPattern1, axiom, isPattern(nc_sp_nc, knowledge)).
fof(isDifferent1, axiom, isDifferent(knowledge, competence)).
fof(isDifferent2, axiom, isDifferent(knowledge, skill)).

Conjeturas If "SZS status Theorem for FOF" term has ambivalent pattern
fof(conjeture1,conjecture, (hasAmbivalentPattern(hardware_knowledge, nc_sp_nc))).

El modelo parte de la propuesta de hechos como fof(hasPattern1, axiom, hasPattern
(hardware_knowledge,, nc_sp_nc)), sobre la que los axiomas realizan las interpretaciones, desde
axiomas básicos como fof(isInterpretedAs2, axiom, isInterpretedAs(hardware_knowledge, skill)), hasta
llegar a la conjetura, que es un axioma que interpreta los hechos a partir del axioma básico
fof(conjeture1,conjecture,(hasAmbivalentPattern(hardware_knowledge,nc_sp_nc)).

4.4.1.2Declaraciones Contingentes sobre el Futuro

Las declaraciones analizan acontecimientos futuros, acciones, etc. Este fenómeno se produce en frases
verbales que generalmente describen competencias y habilidades. En este caso, la frase está formada
por varios verbos que, considerando sus sinónimos, se encuentran en diferentes niveles de habilidad y
procesos cognitivos, que no establecen qué habilidad desarrollará la competencia en breve. Por
ejemplo, según el tesauro Bloom descrito en [61], para la competencia de la Tabla 4.13, “Design and
manage systems”, la palabra “design” pertenece al nivel cognitivo 3 y la palabra “manage” al nivel
cognitivo 5, ambas dentro de procesos cognitivos diferentes (inferior y superior, respectivamente). Por
lo tanto, si finalmente se necesita esta competencia, resulta ambiguo establecer los mecanismos de
enseñanza para conseguirla. Incluso en el proceso de evaluación del aprendizaje no está claro a qué
nivel y proceso cognitivo debe considerarse la competencia.

Tabla 4.13: Casos de declaraciones contingentes sobre el futuro en términos de perfiles debido a la
contradicción de los niveles cognitivos.

Frase verbal Nivel cognitivo 1 Nivel cognitivo 2 Proceso cognitivo 1 Proceso cognitivo 2

Design and manage systems Design: 3 Manage: 5 Inferior Superior

Operate and maintain computer centers Operate: 3 Maintain: 6 Inferior Superior

Para formalizar esta contradicción, proponemos los siguientes axiomas para los problemas de
enunciados contingentes de los ejemplos de la Tabla 4.13.

 Problema 1: Si (el término Th es sinónimo del término del tesauro Tb) y (Th y Tb pertenecen a
niveles cognitivos diferentes Nc1 y Nc2), entonces (Th pertenece a varios niveles cognitivos).

 Problema 2: Si (el término Th1 es sinónimo del término Th2) y (Th1 y Th2 pertenecen a niveles
cognitivos diferentes Nc1 y Nc2), entonces (Th1 y Th2 tienen varios niveles cognitivos).

 Problema 3: Si (el término T es sinónimo de los términos Th1 y Th2) y (Th1 y Th2 pertenecen a
niveles cognitivos diferentes Nc1 y Nc2), entonces (T tiene varios niveles cognitivos).

En la Tabla 4.14, presentamos los modelos dialécticos de los axiomas partiendo del hecho de establecer
que sus niveles cognitivos son diferentes usando fof(isDifferent2, axiom, isDifferent (synthesis,
application)). A continuación, se establece la relación de sinonimia entre los términos con
fof(isSynonymous2, axiom, isSynonymous (design, plan)), y de pertenencia de cada término a un nivel
cognitivo con fof(belongsCognitiveLevel1, axiom, belongsCognitiveLevel (design, synthesis)). De este
modo, la base de conocimiento para la interpretación se construye para la conjetura fof(conjecture,
conjecture,(termsBelongSeveralCognitiveLevels (design, plan))), que tiene un valor de verdadero
porque “design” y “plan” son sinónimos y pertenecen a diferentes niveles cognitivos (“synthesis” y
“application”, respectivamente).

Tabla 4.14: Axiomas de declaraciones contingentes sobre el futuro.

Problema: 1. Si Th es sinónimo del término del tesauro Tb y Th, y Tb tiene diferentes niveles cognitivos Nc1 y Nc2,
entonces Th pertenece a varios niveles cognitivos.

2. Si el verbo relacionado Th1 es sinónimo del verbo correspondiente Th2 y Th1, y Th2 pertenecen a
niveles cognitivos diferentes Nc1 y Nc2, entonces Th1 y Th2 tienen varios niveles cognitivos.

3. Si T es sinónimo de los verbos relacionados Th1 y Th2, y Th1 y Th2 pertenecen a diferentes niveles
cognitivos Nc1 y Nc2, entonces T tiene varios niveles cognitivos.

Axiomas fof(termBelongsSeveralCognitiveLevels, axiom,(
 ! [Th,Tb,Nc1,Nc2] : (
 (isSynonymous(Th,Tb) & belongsCognitiveLevel(Th,Nc1)&
 belongsCognitiveLevel(Tb,Nc2) & isDifferent(Nc1,Nc2))
 => termBelongsSeveralCognitiveLevels(Th)
)
)).
fof(termsRelatedVerbBelongsSeveralCognitiveLevels,axiom,(
 ! [Th1,Th2,Nc1,Nc2] : (
 (belongsCognitiveLevel (Th1,Nc1)&
 belongsCognitiveLevel(Th2,Nc2) & isDifferent(Nc1,Nc2))
 => termsRelatedVerbBelongsSeveralCognitiveLevels(Th1, Th2)
)
)).
fof(termsBelongsSeveralCognitiveLevels, axiom,(
 ! [Th1,Th2] : (
 (termsRelatedVerbBelongSeveralCognitiveLevels(Th1, Th2) |
 termBelongsSeveralCognitiveLevels (Th1) |
 termBelongsSeveralCognitiveLevels (Th2))
 => termsBelongSeveralCognitiveLevels (Th1,Th2)
)
)).

Hechos fof(isDifferent1, axiom, isDifferent(synthesis, knowledge)).
fof(isDifferent2, axiom, isDifferent(synthesis, aplication)).
fof(isDifferent3, axiom, isDifferent(aplication, synthesis)).
fof(isSynonymous1, axiom, isSynonymous(design, sketch)).
fof(isSynonymous2, axiom, isSynonymous(design, plan)).
fof(isSynonymous3, axiom, isSynonymous(plan, sketch)).
fof(belongsCognitiveLevel1, axiom, belongsCognitiveLevel(design, synthesis)).
fof(belongsCognitiveLevel2, axiom, belongsCognitiveLevel(sketch,synthesis)).
fof(belongsCognitiveLevel22, axiom, belongsCognitiveLevel(sketch,knowledge)).
fof(belongsCognitiveLevel3, axiom, belongsCognitiveLevel(plan, aplication)).

Conjeturas If "SZS status Theorem for FOF" terms belongs several cognitive levels
fof(conjetura,conjecture, (termsBelongSeveralCognitiveLevels(design, plan))).
fof(conjetura,conjecture, (termBelongsSeveralCognitiveLevels (design))).

4.4.1.3Discurso Ficticio

Según las creencias de las personas, los enunciados implican la toma de decisiones relacionadas con
determinados supuestos reales o imaginarios. En el caso de las competencias y sus componentes de
conocimientos y habilidades, es habitual que el editor de perfiles coloque estos tres componentes en
secciones de un documento, como la descripción, el campo ocupacional, y no precisamente como

competencias, conocimientos o habilidades. La tabla 4.15 muestra algunos casos fundados en [61],
donde el editor de perfiles colocó la competencia “Plan and manage computer projects” como
antecedente. Un caso similar se refiere al tema de conocimiento “Industrial process control”,
establecido en la sección de competencias. En consecuencia, depende mucho de la interpretación y los
conocimientos del redactor reconocer una competencia o sus componentes de conocimientos y
habilidades, lo que puede generar una ficción en la redacción del perfil académico o profesional.

Tabla 4.15: Casos de discurso ficticio en términos de perfiles por su significado y ubicación.

Término Componente Sección de documentos

Industrial process control Conocimiento Competencias

Development of computer applications Conocimiento Perfil de carrera

Plan and manage computer projects Conocimiento Antecedente

En particular, proponemos el siguiente axioma para este problema, de acuerdo con los ejemplos del
cuadro 4.15. En este caso, la lógica de la descripción no consigue representar la contradicción de los
hechos; por ejemplo, el término “industrial process control” es un componente del conocimiento, pero
se sitúa como una competencia.

Si (el término T se encuentra en la sección del documento C1) y (T es un componente C2) y (C1 es
diferente de C2), entonces (T es una frase ficticia).

En la Tabla 4.16, presentamos el axioma “isFictitiousPhrase” partiendo del hecho de que el término es
un componente de “knowledge” (conocimiento) con fof(isComponent1, axiom,
isComponent(industrial_process_control, knowledge)), que esté ubicado en la sección “competencies”
(competencia) del documento con fof(isLocated1, axiom, isLocated (industrial_process_control,
competencies)), siendo diferentes ”knowledge“ y ”competencies” con fof(isDifferent2, axiom,
isDifferent(knowledge, competencies)). Con base en los hechos, la conjetura fof(conjecture, conjecture,
(isFictitiousPhrase(industrial_process_control, competencies))) tiene un valor de verdadero, porque al
mismo tiempo “industrial_process_control” es un componente de “knowledge” y se identifica como
una “competence”.

Tabla 4.16: Axiomas de los términos ficticios.

Problema: Si el término T se encuentra en la sección del documento C1 y T es un componente C2, y C1 es diferente
de C2, entonces T es una frase ficticia.

Axiomas fof(isFictitiousPhrase, axiom,(
 ! [T,P,C1,C2] : (
 (isLocated(T, C1) & isComponent(T, C2) & isDifferent(C1,C2))
 => isFictitiousPhrase(T)
)
)).

Hechos fof(isComponent1, axiom, isComponent(industrial_processes_control, knowledge)).
fof(isComponent2, axiom, isComponent(industrial_process_control, competencies)).
fof(isLocated1, axiom, isLocated(industrial_process_control, competencies)).
fof(isDifferent1, axiom, isDifferent(competencies, knowledge)).
fof(isDifferent2, axiom, isDifferent(knowledge, competencies)).

Conjeturas If "SZS status Theorem for FOF" is Fictitious Phrase
fof(conjeture, conjecture, (isFictitiousPhrase(industrial_process_control, competencies))).

4.4.1.4Falla de una Presuposición

La afirmación implica la presuposición de algo que en realidad no es cierto, aplicada a las
competencias cuando el término se utiliza mal en una sección del perfil, de tal manera que el término
presuposición es erróneo. Según la interpretación del redactor, es de un tipo, pero es de otro. Por
ejemplo, en la Tabla 4.17, el término “Develop computer applications” se presupone como un “Perfil
de carrera”, cuando en realidad se interpreta como una “Habilidad” [61]. Del mismo modo, “Hardware
control” se supone un “Antecedente”, siendo un “Conocimiento”, y así para los demás casos. Del
mismo modo, para cada término, la suposición del editor de perfiles es errónea en cuanto a la
interpretación del experto.

Tabla 4.17: Casos de fallo de presuposición debido a la contradicción de la interpretación de los
expertos de los términos de los perfiles.

Término Presuposición Interpretación del experto (patrón)

Develop computer applications Perfil de carrera Habilidad

Develop computer programs Competencias Habilidad

Plan and manage computer projects Antecedente Habilidad

Hardware Control Antecedente Conocimiento

Java knowledge Experiencia Habilidad

Para formalizar esta contradicción, proponemos el siguiente axioma para este problema, según los
ejemplos de la Tabla 4.17.

Si (el término T se encuentra en la sección del documento C1) y (T tiene un patrón C2) y (C1 es
diferente de C2), entonces (T es un fallo de presuposición).

En la Tabla 4. 18, presentamos el axioma en Lógica Dialéctica “isPresuppositionFailure” partiendo del
hecho de que el término tiene un patrón de conocimiento “nc_aq” (fof(hasPattern1, axiom,
hasPattern(java_knowledge, nc_aq))), que se encuentra en la sección “experiencia” del documento
(fof(isLocatedIn 1, axiom, isLocatedIn(java_knowledge, experience))), siendo diferentes
“conocimiento” y “experiencia” (fof(isDifferent1, axiom, isDifferent(experience, knowledge))). A partir
de los hechos, la conjetura fof(conjeture, conjeture, (isPresuppositionFailure (java_knowledge))) tiene
un valor de verdadero porque al mismo tiempo “java_knowledge” tiene un patrón de “conocimiento”
que se identifica como una “experiencia”.

Tabla 4.18: Axiomas de fallo de presuposición.

Problema: Si el término T se encuentra en la sección del documento C1, T tiene un patrón C2, y C1 es diferente de C2,
entonces T es un fallo de presuposición.

Axiomas fof(isPresuppositionFailure, axiom,(
 ! [T,P,C1,C2] : (
 (hasPattern(T, P) & isLocatedIn(T, C1) & isPattern(P, C2) & isDifferent(C1,C2))
 => isPresuppositionFailure (T)
)
)).

Hechos fof(hasPattern 1, axiom, hasPattern (java_knowledge, nc_aq)).
fof(isLocatedIn 1, axiom, isLocatedIn(java_knowledge, experience)).
fof(isPattern 1, axiom, isPattern (nc_aq, knowledge)).
fof(isDifferent 1, axiom, isDifferent(experience, knowledge)).

Conjeturas If "SZS status Theorem for FOF" term is Presupposition Failure
fof(conjetura,conjecture, (isPresuppositionFailure (java_knowledge))).

4.4.1.5Razonamiento Contrafáctico

Considerar el significado de los enunciados causales puede explicarse en términos de condicionales
contrafácticos de la forma «Si no hubiera ocurrido A, entonces no habría ocurrido C». En el contexto
de las competencias, el razonamiento contrafáctico se aplica en las hipótesis realizadas al alinear los
términos de las competencias con los términos de los tesauros según medidas de similitud léxica,
estableciendo umbrales para determinar las similitudes. Propondremos la siguiente hipótesis: “Un
término y un tema de un tesauro de competencias pertenecen al mismo dominio de conocimiento
cuando la medida de similitud entre ellos supera el límite de 0,45” [61]. Como se muestra en la Tabla
4.19, para los tres casos propuestos, dos pertenecen al mismo dominio porque la medida de similitud
supera el límite de 0,45. Pero, si cambiamos el valor límite a 0,51, vemos que solo el caso “Software”
frente a “Programming” cumple la hipótesis. En general, el valor umbral es subjetivo, lo que provoca
errores y ambivalencias a la hora de interpretar la pertenencia de un término a un dominio de
conocimiento.

Tabla 4.19: Casos de razonamiento contrafáctico debido a la pertenencia de un término a un dominio
según una medida de similitud.

Término Tópico Dominio Similitud

Software

Software debugging Programming 0.53

Software installation IT installation and configuration 0.50

Software Application Development Software development 0.41

De acuerdo con los ejemplos de la Tabla 4.19, proponemos el siguiente axioma para este problema,

Si (el término T tiene una medida de similitud Ms con un tema Tr mayor que el umbral Us), entonces
(pertenece al tema raíz del tesauro TD).

La tabla 4.20 muestra los axiomas dialécticos para esta contradicción, empezando por los hechos
fof(relationMeasure1, axiom, relationMeasure (software, programming, ms0_48, td1)) y
fof(relationMeasure3, axiom, relationMeasure (software, software_debugging, ms0_52, td12)), que
define que el término “software” tiene una medida de similitud de 0,48 con “programming” y de 0,52
con “software_debugging”. Otro hecho es que las medidas de similitud de 0,48 y 0,52 son más
significativas que el umbral (0,45), y también que los hechos “td1” y “td12” son diferentes. De este
modo, la base de conocimientos para la interpretación se construye según el axioma fof(conjecture,
conjecture, (termBelongsTopic (software, td12))), que es el axioma base para la conjetura
fof(conjecture, conjecture, (termBelongsSeveralTopics (software))). Considerando el término
“software”, el resultado es verdadero porque “software” pertenece a los temas “programación” y
“depuración de software” pertenece al tema raíz del tesauro TD.

Tabla 4.20: Axiomas de razonamiento contrafáctico.

Problema: Si el término T tiene una medida de similitud Ms con un tema Tr mayor que el umbral Us, entonces
pertenece al tema raíz del tesauro TD.

Axiomas fof(termBelongsTopic,axiom,(
 ! [T,Tr,Ms,Us,TD] : (
 (relationMeasure(T, Tr, Ms, TD) & isGreaterThan(Ms, Us))
 => termBelongsTopic(T, TD)
)
)).
fof(termBelongsSeveralTopics,axiom,(
 ! [T,TD1,TD2] : (
 (termBelongsTopic (T, TD1) & termBelongsTopic (T, TD2) & isDifferent(TD1, TD2))
 => termBelongsSeveralTopics (T)
)
)).

Hechos fof(relationMeasure1, axiom, relationMeasure (software, programming, ms0_48, td1)).
fof(relationMeasure2, axiom, relationMeasure (software, software_installation, ms0_30, td11)).
fof(relationMeasure 3, axiom, relationMeasure (software, software_debugging, ms0_52, td12)).
fof(threshold, axiom, threshold = ms0_45).
fof(isGreaterThan1, axiom, isGreaterThan(ms0_48 , threshold)).
fof(isGreaterThan2, axiom, isGreaterThan (ms0_52 , threshold)).
fof(isDifferent 1, axiom, isDifferent (td1 , td12)).

Conjeturas If "SZS status Theorem for FOF term Belongs Topic
fof(conjetura,conjecture, (termBelongsTopic (software, td1))).
fof(conjetura,conjecture, (termBelongsTopic (software, td12))).
If "SZS status Theorem for FOF" term Belongs Several Topics
fof(conjetura,conjecture, (termBelongsSeveralTopics(software))).

4.4.2 Otros Modelos de Conocimiento

Esta sección es un resumen extenso del trabajo presentado en la sección 3 del Anexo 4.C, dónde se
presentan dos modelo de conocimiento basado en axiomas dialécticos centrados en el razonamiento
contrafáctico y fallo de la presuposición [59]. Para ello, se analizan los casos de ambigüedad dialéctica
aplicados a términos de conocimiento y habilidad usando los dos tesauros presentados anteriormente:
DISCO II (para conocimiento) y BLOOM (para habilidad) [61], con el fin de identificar la ambigüedad
semántica presente para el alineamiento entre términos de competencias y los tópicos en los tesauros.

En el primer caso, abordamos la contradicción que existe en cuanto a la pertenencia de un término de
conocimiento a un tópico de un tesauro, tomando a DISCO II como tesauro de referencia [60]. Los
axiomas se definen en torno al siguiente problema:

Si el término T tiene una medida de similitud Ms con un tópico Tr mayor al umbral Us, entonces
pertenece al tópico raíz del tesauro TD.

En la Tabla 4.21 se observan los 4 axiomas que lo describen, los cuales están relacionados entre sí, de
tal forma que para que se cumpla un axioma, deben cumplirse los axiomas relacionados. Por ejemplo,
el axioma “terminoPerteneceTopicos” requiere del cumplimiento de los axiomas

“términoPerteneceTopico”, “terminoPerteneceVariosTopicos” y “terminoPerteneceAlgunTopico”. Con
estas relaciones, se describe que un término T pertenece a varios tópicos del tesauro si la medida de
similitud es mayor que el umbral establecido.

Tabla 4.21: Axiomas caso 1.

Problema: Si el término T tiene una medida de similitud Ms contra un tópico Tr mayor al umbral Us entonces
pertenece al tópico raíz del tesauro.

Axiomas fof(terminoPerteneceTopico,axiom,(
 ! [T,Tr,Ms,Us] : (
 (medidaRelacion(T, Tr, Ms) & esMayor(Ms, Us))
 => terminoPerteneceTopico(T, Tr)))).
fof(terminoPerteneceAlgunTopico,axiom,(
 ! [T,Tr] : (
 (terminoPerteneceTopico(T , Tr))
 => terminoPerteneceAlgunTopico(T)))).
fof(terminoPerteneceTopicos,axiom,(
 ! [T,Tr1,Tr2] : (
 (terminoPerteneceTopico(T , Tr1) & terminoPerteneceTopico(T , Tr2))
 => terminoPerteneceTopicos(T,Tr1,Tr2)))).
fof(terminoPerteneceVariosTopicos,axiom,(
 ! [T,Tr1,Tr2] : (
 (terminoPerteneceTopicos(T,Tr1,Tr2))
 => terminoPerteneceVariosTopicos(T)))).

Hechos fof(medidaRelacion1, axiom, medidaRelacion(software, programacion, s0_48)).
fof(medidaRelacion2, axiom, medidaRelacion(software, depuracion_de_software,
s0_52)).
fof(medidaRelacion3, axiom, medidaRelacion(software, instalacion_de_software,
s0_30)).
fof(umbral, axiom, umbral = s0_45).
fof(esMayor1, axiom, esMayor(s0_48 , umbral)).
fof(esMayor2, axiom, esMayor(s0_52 , umbral)).
fof(esMayor3, axiom, esMayor(s0_30, umbral)).

Conjeturas Si “SZS status Theorem for FOF” término pertenece al tópico
fof(conjetura1,conjecture, (terminoPerteneceTopico(software,programacion))).

Si “SZS status Theorem for FOF” término pertenece a algún tópico
fof(conjetura2,conjecture, (terminoPerteneceAlgunTopico(software))).

Si “SZS status Theorem for FOF” término pertenece a los dos tópicos
fof(conjetura3,conjecture, (terminoPerteneceTopicos(software,programacion,depuracion_de_software))).

Si “SZS status Theorem for FOF” término pertenece a varios tópicos
fof(conjetura4,conjecture, (terminoPerteneceVariosTopicos(software))).

Para el segundo caso, consideramos la ambigüedad que existe entre términos de habilidades cuando
pertenecen a dos niveles cognitivos distintos, esto se da debido los sinónimos que tiene un término, y a
los niveles cognitivos que pertenecen estos sinónimos. El tesauro con el cual realizamos este análisis es
con el tesauro BLOOM que se explica en [61], el cual presenta estas contradicciones. Este ejemplo lo
podemos ver en detalles en la sección 3.2 del Anexo 4.C.

4.4.3 Análisis General

La Lógica Dialéctica ofrece una herramienta poderosa para analizar la ambigüedad inherente a las
descripciones de competencias profesionales en textos digitales, ya que la lógica tradicional, con su
enfoque binario de Verdadero o Falso, resulta insuficiente para modelar las múltiples interpretaciones
válidas que pueden surgir del lenguaje natural en este contexto. Para superar esta limitación, definir
modelos basados en axiomas dialécticos permiten identificar y analizar contradicciones y
ambivalencias en la descripción de competencias, abarcando fenómenos como la vaguedad, el fallo de
presuposición, el razonamiento contrafáctico, el discurso ficticio y las declaraciones contingentes sobre
el futuro. Para evaluar la efectividad de los modelos presentados, se utilizaron métricas como la
Completitud, la Robustez y la Entropía que pueden ser revisados en [58, 59]. Los modelos propuestos
buscan mejorar la precisión en la identificación de conocimientos y habilidades, con aplicaciones en la
educación, la gestión de recursos humanos y el desarrollo de sistemas de aprendizaje inteligentes.

5 Arquitectura de Meta-Aprendizaje para Modelos de
Aprendizaje Automático basado en Datos Enlazados

En este capítulo se presenta la construcción de una arquitectura de Meta-Aprendizaje para la
generación de modelos de Aprendizaje Automático basado en el paradigma de los Datos Enlazados.
Esta arquitectura lleva a cabo las diferentes tareas de los expertos en datos o científicos para la
generación de modelos de Aprendizaje Automático, quienes se encargan de tareas como la extracción
de información de las fuentes de datos, el procesamiento de datos, la selección de los algoritmos de
Aprendizaje Automático, el ajuste de los hiperparámetros de los algoritmos de Aprendizaje Automático,
entre otras. La estructura del capítulo es la siguiente: La sección 5.1, en consonancia con la sección II
del artículo presentado en el Anexo 5.A, describe el diseño de la arquitectura de Meta-Aprendizaje
basado en Datos Enlazados para la generación automática de modelos de conocimientos. La sección
5.2, se basa en la Sección 4 del artículo presentado en el Anexo 5.B, y presenta la ampliación de la
arquitectura presentada en la sección 5.1., introduciendo un nuevo nivel de sofisticación en la
generación de modelos de conocimiento y la integración de nuevas capacidades. Todo esto, gracias a su
Meta-Algoritmo autónomo que permite automatizar la construcción de modelos de Aprendizaje
Automático, invocando los diferentes módulos especializados como los de aprendizaje por
transferencia (Transferencia de Modelos, de Parámetros y de Datos) y de Generación de Datos
Sintéticos. La sección 5.2.1 describe la arquitectura de generación de características usando modelos de
Aprendizaje Automáticos, basándose en la sección III del artículo presentado en el Anexo 5.C. La
sección 5.2.2 presenta la arquitectura de generación de datos artificiales usando Datos Enlazados,
basándose en la sección II del artículo presentado en el Anexo 5.D y en la sección III del artículo
presentado en el Anexo 5.E. La sección 3 presenta varios casos de estudio. Concretamente, la
subsección 5.3.1 ilustra un caso de estudio de la arquitectura de Meta-Aprendizaje, basado en la
sección 5 del artículo del Anexo 5.B. La subsección 5.3.2 presenta un caso de estudio sobre la
generación de características, fundamentado en la sección IV del artículo del Anexo 5.C. A su vez, la
subsección 5.3.3 ilustra un caso de estudio centrado en la generación de datos artificiales, tomando
como base la sección III del artículo del Anexo 5.D. Finalmente, la sección 5.4 explora el uso de este
tipo de arquitectura en el contexto de las cadenas de producción agroindustrial, basada en la sección 3
del artículo presentado en el Anexo 5.F.

5.1 Arquitectura

Esta sección presenta un resumen extenso del trabajo presentado en [9], cuyos detalles se encuentran en
la sección II del artículo presentado en el Anexo 5.A. En dicho trabajo, se propone una arquitectura
conceptual que sigue las tres fases propuestas por la metodología MIDANO [53, 62], que son: en la
fase 1, se identifican las fuentes para la extracción de conocimiento. En la fase 2, se preparan los datos,
es decir, se procesan los datos disponibles en las fuentes de conocimiento mediante tareas de ingeniería
de características, entre otras. Por último, en la fase 3, se implementan diferentes tareas para generar los
modelos de conocimiento requeridos, como la configuración de técnicas de Aprendizaje Automático y
la construcción e integración de modelos de Aprendizaje Automático. Esta arquitectura se compone de
las siguientes capas (ver Figura 5.1):

 KSL: Esta capa almacena y gestiona la información sobre los elementos necesarios en los
procesos de Aprendizaje Automático, como el conjunto de datos a utilizar, las características
(conocimiento extraído del conjunto de datos) y los modelos de conocimiento a construir
(hiperparámetros, técnicas de aprendizaje, métodos de validación, entre otros). Se compone
principalmente de fuentes de Datos Enlazados, que proporcionan datos con información
semántica. Esta capa se compone del módulo llamado Linked Data Module (LDM).

 MKL: Esta capa gestiona todo el conocimiento relacionado con los procesos, tareas y
estrategias para la utilización de técnicas de Aprendizaje Automático para construir modelos de
conocimiento. En concreto, describe todos los elementos que componen el Aprendizaje
Automático, planifica y organiza los procesos a ejecutar, analiza y evalúa las estrategias
utilizadas en los diferentes procesos y/o tareas, y descubre nuevo conocimiento basado en la
experimentación, entre otros. Esta capa está compuesta por los módulos de Meta-Learning
(MLM), Meta-Feature (MFM), Meta-DataSet (MDSM) y Meta-Model (MMM).

 KML: Esta capa ejecuta y registra todos los procesos de Aprendizaje Automático. En concreto,
se procesan y enriquecen los conjuntos de datos; se aplica la ingeniería de características; se
seleccionan los algoritmos de entrenamiento, los cuales se utilizan para construir modelos de
conocimiento, que se evalúan posteriormente. Esta capa se compone de los módulos de Feature
Engineering (FEM), Tuning (TM), Model Building (MBM) y Model Integration (MIntM).

5.1.1 Módulos de la arquitectura

En esta sección se ofrece una descripción general de los módulos que componen las capas de la
arquitectura de Meta-Aprendizaje. A continuación, se presenta el módulo KSL:

 LDM: Este módulo utiliza el paradigma de Datos Enlazados para gestionar la información
generada por el MKL y el KML, ofreciendo mecanismos de consulta (leer, crear, actualizar o
borrar triplas) a todos los módulos de la arquitectura.

Se describen a continuación los módulos de MKL:

Figura 5.1: Arquitectura conceptual del Meta-Aprendizaje.

 MLM: Este módulo es el encargado de tomar todas las decisiones generales de la arquitectura,
es decir, es el responsable de invocar al resto de módulos especializados en cada tarea. También
es responsable de recibir y caracterizar el problema a resolver, y de identificar la fuente de datos
que se utilizarán para resolverlo.

 MFM: Este módulo se encarga de gestionar el conocimiento sobre las propiedades generales de
las características de los conjuntos de datos. En particular, este módulo especifica la
información que debe generarse a partir de los conjuntos de datos, como las medidas
estadísticas estándar, la correlación entre los datos, entre muchas otras.

 MDSM: Este módulo se encarga de gestionar el conocimiento específico sobre los datos que se
utilizan para generar un modelo Aprendizaje Automático. Para ello, mantiene un registro que
describe los conjuntos de datos y sus metadatos, como el número de instancias, atributos, clases,
autor, fecha de creación, fecha de modificación, etc. MDSM utiliza estándares (ontologías y
vocabularios) para representar y describir estos datos. Además, también se encarga de
especificar los procesos necesarios para limpiar y transformar un conjunto de datos.

 MMM: Este módulo se encarga de gestionar el conocimiento sobre el entrenamiento y
validación de los modelos de Aprendizaje Automático. Para ello, guarda todas las características
de los modelos de Aprendizaje Automático con sus reglas y procesos para su creación. Además,
registra todas las validaciones y pruebas realizadas sobre estos modelos, con el objetivo de
comparar sus calidades.

A continuación, se detallan los módulos de KML:
 FEM: Este módulo se encarga de preparar el conjunto de datos de entrada adecuado para el

modelo de Aprendizaje Automático, utilizando como base de conocimiento la información que
tiene LDM.

 TM: Este módulo se encarga de seleccionar el algoritmo de Aprendizaje Automático y preparar
su configuración, utilizando el conocimiento proporcionado por el MLM sobre experiencias en
ejecuciones anteriores, lo que le permite identificar los algoritmos adecuados para resolver el
problema.

 MBM: Este módulo se encarga del entrenamiento y validación de los modelos de Aprendizaje
Automático, utilizando como base de conocimiento la información proporcionada por TM sobre
la configuración del algoritmo a utilizar.

 MIntM: Este módulo es activado opcionalmente por MLM, cuando se deben integrar los
modelos de Aprendizaje Automático previamente creados, utilizando técnicas como Bagging,
Boosting, Stacking, entre otras. En concreto, este módulo permite utilizar los modelos básicos
previamente creados como bloques de construcción para diseñar modelos de Aprendizaje
Automático más complejos mediante su combinación. La razón puede ser que estos modelos
básicos no funcionen tan bien por sí solos, ya sea porque tienen un sesgo alto (por ejemplo,
modelos de bajo grado de libertad) o porque tienen demasiada varianza para ser robustos (por
ejemplo, modelos de alto grado de libertad).

5.2 Ampliación de la Arquitectura

Esta sección presenta un resumen extenso del trabajo presentado en [63], y la sección 4 del artículo
presentado en el Anexo 5.B contiene los detalles completos. Esta investigación amplía

significativamente el trabajo presentado en la sección anterior, al optimizar la generación de modelos
de conocimiento usando un ciclo autónomo de tareas, pero además, integra nuevas capacidades. A su
vez, en la sección 5.2.1 se presentan los detalles sobre la generación de características usando modelos
de Aprendizaje Automáticos, y en la sección 5.2.2 se presentan los detalles sobre la generación de datos
artificiales usando Datos Enlazados. Estas ampliaciones se enumeran a continuación (véase la Figura
5.2):

 El corazón de esta innovación radica en la implementación de un Meta-Algoritmo autónomo
que permite automatizar la construcción de modelos de Aprendizaje Automático, invocando los
diferentes módulos especializados de forma estratégica, seleccionando las herramientas y
técnicas más apropiadas (Nuevo módulo de Meta-Technique) para resolver las tareas
específicas a mano. Además, incorporando de forma inteligente los nuevos módulos de
aprendizaje por transferencia como Transferencia de Modelos, Transferencia de Parámetros y
Transferencia de Datos, así como y Generación de Datos Sintéticos.

 A su vez, se ha reorganizado y ampliado KML, lo que permite agrupar características similares
en el proceso de Aprendizaje Automático, facilitando futuras mejoras y ampliaciones de cada
grupo de características. Esta capa se ha redefinido en tres nuevos módulos especializados:
I. Dataset Engineering (DEM): Ingeniería de conjuntos de datos (DEM): Responsable de la

preparación y optimización de los conjuntos de datos garantizando que son adecuados para
el análisis y la modelización. Incluye nuevos submódulos, como Dataset Acquisition,
Dataset Preparation, Data Transfer y Generate Synthetic Data.

II. Feature Engineering (FEM): Dedicado a la creación y selección de características
relevantes, que permitirán a los modelos capturar las relaciones subyacentes en los datos. Se
añaden los submódulos AutoFeature y Feature Generation. Además, se integran nuevas
técnicas a los submódulos Feature Extraction y Feature Selection.

III. Model Engineering (MEM): Centrado en el diseño, entrenamiento y evaluación de
modelos ML, seleccionando la arquitectura y los hiperparámetros más adecuados para cada
tarea. Incluye nuevos submódulos como Model Transfer y Parameter Transfer.

Figura 5.2: Arquitectura de Meta-Aprendizaje ampliada (nuevos componentes resaltados
en recuadros rojos).

A. Meta-Algoritmo Autónomo

En la capa MKL, el módulo MLM gestiona la activación de los diferentes módulos de la arquitectura
mediante un Meta-Algoritmo Autónomo. Este algoritmo guía cada decisión y proceso en función de las
necesidades específicas de cada tarea y del conocimiento que la arquitectura ha adquirido de tareas
anteriores. La Figura 5.3 presenta el diagrama de flujo que ilustra los principales procesos y decisiones.
El Meta-Algoritmo Autónomo detecta cuando MLM recibe el problema a resolver. Analiza el problema
y lo caracteriza, e invoca al módulo de Dataset Acquisition, solicitando los posibles datasets a utilizar
para el problema caracterizado. Una vez que el conjunto de datos está disponible, procede a activar el
proceso de Dataset Preparation para normalizar el conjunto de datos. En este punto, el Meta-
Algoritmo Autónomo comprueba si existe un modelo previamente creado con las mismas
características y conjunto de datos de entrada (Decision 1). Si el modelo existe, procede a realizar una
transferencia de modelo usando el módulo Model Transfer, y entrega el modelo con su meta-
información. En caso contrario, se inicia el proceso de creación de un nuevo modelo. Para comenzar
con la creación de un nuevo modelo, se comprueba si existe un modelo con características y conjunto
de datos similares (Decision 2). Si existe, se toma el modelo con mejores resultados y se realiza una
transferencia de parámetros usando el módulo Parameter Transfer. En ambos casos, el proceso
continúa con la tercera decisión (Decision 3), en la que se comprueba si el conjunto de datos es lo
suficientemente grande como para crear el nuevo modelo. En este caso, el conjunto de datos se
almacena con su Meta-Dataset. En caso contrario, se comprueba si existe un conjunto de datos similar
en la arquitectura (Decision 4). Si existe, el conjunto de datos se utiliza para realizar una transferencia
de datos usando el módulo Data Transfer. En caso contrario, el conjunto de datos original se utiliza
para generar datos sintéticos (Generate Synthetic Data). En ambos casos, el conjunto de datos obtenido
se almacena con su Meta-Datos. A continuación, el Meta-Algoritmo Autónomo procede a activar el
módulo de Feature Engineering para seleccionar, extraer o generar las características relevantes para el
problema específico. Por último, se activa Create Model para ejecutar los procesos Tunning, Model
Building y Model Integration. Al finalizar, el modelo generado se almacena con todas sus
características (usando Create Meta-Model), y se entrega con su meta-información. Para la creación de
nuevos modelos sin transferencia previa de conocimientos, se utiliza la información proporcionada por
el módulo Meta-Technique. Este módulo se dedica a gestionar de forma inteligente el conocimiento
asociado a las técnicas de aprendizaje disponibles en la arquitectura para diferentes tareas. Así, facilita
una comprensión más profunda y una gestión más eficaz de las técnicas de aprendizaje, incluyendo
valores por defecto para sus hiperparámetros, métricas asociadas, entre otros.

B. Modificación de KML

Para mejorar la modularidad y la gestión de características, KML se ha estructurado en tres módulos
especializados: DEM, FEM y MEM. Estos módulos ofrecen varias ventajas, como una mejor
organización de las funcionalidades relacionadas en los procesos de KML, la simplificación de las
tareas de mantenimiento y la posibilidad de realizar mejoras y ampliaciones específicas.

El nuevo MDE agrupa los procesos asociados a la gestión de conjuntos de datos, ocupándose de su
adquisición, preparación, optimización y generación para garantizar su idoneidad en el análisis y
construcción de modelos de conocimiento. El Meta-Algoritmo Autónomo activa estos procesos
(submódulos) con la información del MDSM, según el requerimiento deseado. Entre los submódulos
disponibles se encuentran los siguientes:

 Dataset Acquisition [38, 37]: El objetivo de este módulo es encontrar muestras de datos para el
contexto dado, o recopilar el conjunto de datos proporcionado por el usuario. Cuando se
requiere buscar muestras de datos, se obtienen utilizando mecanismos de búsqueda basados en
ML, aprovechando Fuentes de Datos Abiertas (Open Data Sources, ODS) o endpoints, como los
proporcionados oficialmente en países como Estados Unidos (https://www.data.gov/), España
(https://datos.gob.es/) y Europa (https://data.europa.eu), entre muchos otros.

 Dataset Preparation [38, 37]: El objetivo de este módulo es transformar el conjunto de datos
de la muestra en una representación óptima para los modelos que se van a construir. En este
proceso, los atributos con datos textuales o numéricos que representan un conjunto finito
específico de categorías o clases se procesan como Datos Categóricos, y los atributos con datos
numéricos y alta varianza se normalizan.

 Generate Synthetic Data [38, 37, 64, 65]: El objetivo de este módulo es generar datos
sintéticos a partir de la muestra de datos optimizada. En este proceso, se construye y entrena un
modelo de conocimiento que extrae y aprende automáticamente las características de la muestra
de datos. Con este modelo, se generan los datos sintéticos necesarios (más detalles en la sección
5.2.2).

Figura 5.3: Meta-algoritmo autónomo para MLM, mostrando la invocación a los
procesos KML (Rojo) y MKL (Verde).

 Data Transfer [66, 67, 68]: El objetivo de este módulo es transferir datos de un dominio de
origen al dominio de destino. Este enfoque implica medir la similitud entre un dominio de
origen y un dominio de destino, y seleccionar un dominio de origen similar que tenga muchos
más datos de entrenamiento que el dominio de destino.

FEM concentra los procesos de generación y selección de características relevantes a partir de los
datos, lo que permite a los modelos identificar las relaciones subyacentes en los datos. El Meta-
Algoritmo Autónomo activa estos procesos (submódulos) utilizando información de MFM y MTM.
Dentro del FEM, AutoFeature y Feature Generation son nuevos submódulos, pero además, se han
ampliado los submódulos Feature Selection y Feature Extraction.

 AutoFeature [69]: Este módulo aplica automáticamente diferentes técnicas de ingeniería de
características, como la generación de características basada en redes CNN, donde los datos se
transforman en imágenes. A continuación, las imágenes se utilizan como entrada para un
modelo CNN que genera las características (más detalles en la sección 5.2.1).

 Feature Generation [37, 70]: Este módulo aplica técnicas de generación de características
como i. Característica de Interacción, ii. Característica Polinomial, iii. Característica
Trigonométrica, iv. Creación de Clusters. y iv. Combinación de Niveles Raros.

 Feature Extraction [37, 71]: Este módulo aplica técnicas de extracción de características como
i. Cálculo de característica basada en la media, ii. Cálculo de característica basada en la
mediana y iii. Cálculo de característica basada en cuartiles.

 Feature Selection [37, 72]: Este módulo aplica técnicas de selección de características como i.
Importancia de la Característica por Permutación. ii. Eliminación de Multicolinealidad. iii.
Filtrado por Baja Varianza. Y iv. Selección de Características usando metaheurísticas como los
Algoritmos Genéticos.

MEM agrupa los procesos (submódulos) asociados al diseño, entrenamiento y evaluación de modelos
de Aprendizaje Automático, permitiendo al Meta-Algoritmo Autónomo, con información de MTM y
MMM, determinar la arquitectura e hiperparámetros óptimos para cada tarea. Adicionalmente, ofrece
procesos para la reutilización de la información de los modelos previamente creados. Los procesos
disponibles se detallan a continuación:

 Create Model [9]: Este módulo se encarga de entrenar y validar los modelos de Aprendizaje
Automático, utilizando como base de conocimiento la información proporcionada por MLM
sobre la configuración del algoritmo a utilizar y su respectivo conjunto de datos.

 Model Transfer [66, 38, 64]: El objetivo de este módulo es transferir el mejor modelo
construido del dominio de origen al dominio de destino. Para ello, se selecciona el mejor
modelo entrenado del dominio de origen cuando las características del modelo de origen son
muy similares a las características del modelo de destino. Este modelo será el que se transfiera.
En segundo lugar, se ajustan las variables del conjunto de datos de destino para que coincidan
con las variables del conjunto de datos de origen, lo que permitirá utilizar correctamente el
modelo que se va a transferir. Por último, se entrega el conjunto de datos de destino ajustado
con el modelo de origen transferido.

 Parameter Transfer [66, 38, 64]: El objetivo de este módulo es transferir los parámetros del
mejor modelo construido en el dominio de origen al dominio de destino. Para ello, en primer
lugar, se selecciona el mejor modelo entrenado en el dominio de origen. En segundo lugar, se
transfieren los parámetros de este modelo al modelo del dominio de destino para mejorarlo. Los
dominios de origen son aquellos modelos de Aprendizaje Automático con mayor rendimiento y
cuyos conjuntos de datos sobre los que se ha entrenado tienen una mayor similitud estadística

con el dominio de destino. El modelo más similar y mejor es el que se utiliza para transferir
todos sus parámetros.

5.2.1 Generación de Características

Este apartado resume el trabajo presentado en [69], cuyos detalles se encuentran en la sección III del
artículo presentado en el Anexo 5.C. A continuación, se describe la arquitectura propuesta, denominada
EAFECNN (Explainability Analysis FE-CNN), detallando cada uno de sus módulos. Esta arquitectura
surge de la necesidad de aprovechar la capacidad de las CNN para la generación de características en
problemas con datos tabulares. Para ello, se implementan dos mecanismos que automatizan la
ingeniería de características (véase la Figura 5.4): en primer lugar, la transformación de datos tabulares
a imágenes (Multidimensional Transformation), que introduce la generación implícita de características
al cambiar la representación de la información; y en segundo lugar, el uso de la capacidad inherente de
las CNN para generar automáticamente características relevantes en cada capa (CNN Feature
Generator). Además, se incorporan técnicas de análisis de explicabilidad para comprender mejor el
funcionamiento interno del modelo y ofrecer una mayor transparencia en las decisiones tomadas (CNN
Explainability Analysis). Esta combinación permite una mayor confianza y transparencia en la
generación de características en tareas de Aprendizaje Automático. Así, proponemos una arquitectura
compuesta por los siguientes módulos (véase la Figura 5.4): Multidimensional Transformation (MT),
CNN Feature Generator (CNN-FG), y CNN Explainability Analysis (CNN-EA). A continuación se
describe detalladamente cada módulo.

A. Módulo MT

El principal objetivo de este módulo es preparar la muestra de datos de forma óptima para su uso en
modelos basados en CNN. Esto implica transformar los datos tabulares en una representación
multidimensional, concretamente en imágenes sintéticas [73]. Existen varios métodos para realizar esta
transformación que, en general, se basan en asignar los datos a posiciones o escalas de color específicas
dentro de los píxeles de la imagen. De este modo, las características de los datos se representan

Figura 5.4: Arquitectura EAFECNN.

visualmente en la imagen sintética. TINTOlib (https://tintolib.readthedocs.io/) es una biblioteca que
proporciona diversos métodos para realizar esta tarea de transformación, como:

 TINTO: Este algoritmo convierte datos en imágenes mediante la representación de píxeles
característicos, aplicando métodos de reducción bidimensional como PCA y T-SNE.

 SuperTML: Este algoritmo asigna cada característica a una región única dentro de la imagen.
El valor de la característica se representa como texto sobre fondo negro, utilizando un tamaño
de fuente que puede ser fijo o variable en función de la importancia de la característica.

 IGTD: Este algoritmo asigna cada característica a una posición de píxel específica en la
imagen. La intensidad del píxel se utiliza para representar el valor de la característica
correspondiente en la muestra.

 REFINED: Este algoritmo tiene en cuenta las similitudes entre las características para generar
un mapa de características conciso en forma de imagen bidimensional minimizando los valores
de distancia por pares siguiendo un enfoque de escalado multidimensional métrico bayesiano.

 BarGraph: Este algoritmo genera un gráfico de barras blancas sobre fondo negro para
representar cada una de las muestras. Cada barra representa una característica normalizada
específica presente en el conjunto.

 DistanceMatrix: Este algoritmo calcula la matriz de distancias entre las características y luego
aplica una normalización para establecer una escala blanco/negro entre 0 y 255.

 Combination: Este algoritmo combina BarGraph y DistanceMatrix, utilizando una capa de
color diferente de la imagen para cada algoritmo.

La tabla 5.1 muestra el macro-algoritmo MT. Este proceso comienza con la preparación del conjunto de
datos para garantizar que sean compatibles con el proceso de transformación (paso 1), ya que solo
admite conjuntos de datos numéricos. Se trata de convertir los valores textuales en valores numéricos
discretos que representen las distintas categorías presentes en los datos (paso 1.1). Por último, en la
etapa 2, se aplica el método de transformación seleccionado al conjunto de datos preparado. El proceso
de transformación consiste en convertir cada fila del dataset en una imagen. Las imágenes se agrupan
en carpetas según las distintas clases objetivas. El resultado final es un conjunto de datos
multidimensional que será utilizado por el modelo de Aprendizaje Automático basado en CNN.

Tabla 5.1: Macro-algoritmo del módulo MT que transforma el conjunto de datos para CNN.

Entrada: Dataset de muestra y Método de Transformación
Procedimiento:
1. Prepara el Dataset para la Transformación
1.1. Se categorizan los atributos textuales
2. Transforma el Dataset de muestra con el Método de Transformación
Salida: Dataset Multidimensional

B. Módulo CNN-FG

El objetivo de este módulo es realizar el proceso de generación de características utilizando modelos
basados en CNN. Estos modelos tienen la capacidad de automatizar este proceso, utilizando las capas
iniciales e intermedias del modelo CNN, ya que es en estas capas donde se realiza este proceso. En
concreto, se utiliza un modelo ResNet-50 pre-entrenado (ver Figura 5.5), aprovechando las capas de las
etapas 1 a 5, encargadas de extraer características básicas y de bajo nivel de las imágenes, como bordes,
colores y texturas; y descartando las capas siguientes (recuadro rojo), encargadas de aprender

características más específicas y de alto nivel. Al utilizar un modelo preentrenado como ResNet-50, se
aprovecha el conocimiento adquirido a partir de grandes datasets, lo que reduce significativamente el
tiempo y los recursos necesarios para entrenar el modelo en una tarea específica, además de regularizar
y evitar el sobreajuste. Además, el modelo preentrenado ya ha aprendido representaciones genéricas de
imágenes a partir de un enorme dataset, lo que lo hace adecuado para esta tarea de generación de
características.

La tabla 5.2 muestra el macro-algoritmo CNN-FG. Este proceso comienza cargando el modelo ResNet-
50 que ha sido previamente entrenado utilizando un conjunto masivo de datos de imágenes (Paso 1). En
el Paso 2, se procede a eliminar las capas de clasificación, que son las capas finales del modelo,
buscando aprovechar el conocimiento adquirido por las capas intermedias del modelo, expertas en
extraer información visual relevante. A continuación, el modelo modificado se utiliza para procesar
cada elemento del Dataset Multi-Dimensional generado por el módulo anterior, generando una
representación vectorial de las características genéricas presentes en la imagen (Paso 3). Por último, las
características generadas se extraen del modelo modificado y se almacenan en el Dataset de
Características (Paso 4).

Tabla 5.2: Macro-algoritmo del módulo CNN-FG para generar las características.

Entrada: Dataset Multi-Dimensional
Procedimiento:
1. Carga el modelo ResNet-50 preentrenado.
2. Elimina las capas finales del modelo cargado.
3. Procesa el Dataset Multi-Dimensional a través del modelo modificado.
4. Guarda las características generadas en el Dataset Optimizado.
Salida: Dataset de características

C. Módulo CNN-EA

Figura 5.5: Arquitectura RESNET-50.

El objetivo de este módulo es revelar el funcionamiento interno del modelo CNN proporcionando una
representación visual o textual que detalle el razonamiento que subyace a las decisiones tomadas por el
modelo para cada imagen del conjunto de datos. Esta transparencia en el proceso de toma de decisiones
permite a los usuarios comprender mejor las capacidades y limitaciones del modelo, identificar posibles
sesgos o errores, y generar confianza en sus resultados. Existen varias técnicas de explicabilidad para
llevar a cabo esta tarea, por ejemplo:

 GRADCAM (Gradient-weighted Class Activation Mapping) [74]: Genera un mapa de calor
que resalta las regiones de la imagen que más contribuyeron a la predicción del modelo
calculando el gradiente de la puntuación de clasificación con respecto a las activaciones de las
características convolucionales.

 SCORECAM (SCoring by Output RE-CAM) [75]: Genera un mapa de calor que muestra las
ROIs (Regiones de Interés) y sus puntuaciones. Las ROIs son regiones de interés donde más
influyen en la predicción del modelo. Para asignarles una puntuación, se calcula el gradiente de
la función de pérdida del modelo con respecto a la activación de cada ROI.

 LAYERCAM (Layer-wise Attention Chain-based Attention Mapping) [76]: Genera un
mapa de activación visualizando qué partes de las entradas son más importantes para la
predicción del modelo, utilizando una cadena de atención para propagar la atención desde la
última capa de la CNN a las capas anteriores.

 GUIDEDBP (Guided Upward Input Deep Back Propagation) [77]: Genera un mapa de
calor, que muestra las regiones que tuvieron mayor impacto en la clasificación. Se basa en la
idea de modificar el proceso de retropropagación para identificar las regiones de entrada que
más contribuyen a la activación de una neurona específica.

La Tabla 5.3 muestra el macro-algoritmo CNN-EA, este proceso comienza seleccionando la técnica de
explicabilidad deseada (Paso 1). En el Paso 2, la técnica de explicabilidad seleccionada se aplica a cada
imagen del Dataset Multi-Dimensional, y se genera un informe de las representaciones visuales que
explican cómo el modelo CNN toma decisiones para cada imagen.

Tabla 5.3: Macro-algoritmo del módulo CNN-EA para analizar el modelo.

Entrada: Dataset Multi-Dimensional y Modelo CNN
Procedimiento:
1. Selecciona la técnica de explicabilidad
2. Genera un Informe de Análisis de Explicabilidad según la técnica seleccionada
Salida: Informe del Análisis de Explicabilidad

5.2.2 Generación de Datos Artificiales

Esta sección presenta un resumen extenso de los trabajos presentados en [38, 37], y los detalles se
encuentran en la sección II del artículo presentado en el Anexo 5.D y en la sección III del artículo
presentado en el Anexo 5.E. La generación de datos artificiales implica un conjunto de procesos
complejos que permiten identificar, extraer, transformar y aprender las características relevantes del
conjunto de datos a generar. La arquitectura SDGS (Synthetic Data Generation System) logra esto
mediante la combinación del paradigma de Datos Enlazados para identificar y extraer datos de Internet,
y la técnica VAE para transformar y aprender un modelo con estos datos, de forma que este modelo

pueda utilizarse posteriormente para generar datos sintéticos. Esta arquitectura se compone de los
siguientes módulos (véase la Figure 5.6) [38]:

 DataSet Acquisition (DSA): El objetivo de este módulo es encontrar muestras de datos a través
de mecanismos de búsqueda basados en Datos Enlazados, aprovechando ODS o endpoints.

 Data Preparation (DP): El objetivo de este módulo es optimizar la muestra de datos. Normaliza
atributos numéricos con alta varianza y procesa datos textuales o numéricos que representan un
conjunto finito específico de categorías o clases.

 Synthetic Data Generation (SDG): El objetivo de este módulo es generar datos sintéticos
entrenando un modelo de conocimiento basado en VAE, que extrae y aprende automáticamente
las características de la muestra de datos optimizada para un contexto determinado.

Luego, en [37] se amplió el enfoque propuesto (ver Figura 5.7). En primer lugar, añadiendo dos
procesos al módulo DSA, un primer proceso centrado en el uso de múltiples fuentes de datos y un
segundo proceso centrado en la fusión de múltiples conjuntos de datos. Además, se añade un nuevo
módulo, denominado Feature Engineering (FE), para analizar las características de los conjuntos de
datos de muestra que utilizará el SDG, permitiendo la fusión de características, la extracción de
características y la selección de características. Por último, el SDG se implementa utilizando la técnica
VAE como generador de datos.

A. Módulo DSA

El objetivo de este módulo es encontrar muestras de datos para un contexto dado utilizando el
paradigma de Datos Enlazados. La Tabla 5.4 muestra el macro-algoritmo del módulo DSA. Este

Figura 5.6: Arquitectura de generación sintética de datos.

Figura 5.7: Ampliación del SDGS.

módulo comienza analizando el contexto de las muestras de datos requeridas, obteniendo las palabras
clave para buscar las muestras de datos (Paso 1). A continuación, se invoca el proceso Multi-sources
para buscar los datasets utilizando las palabras clave obtenidas en el paso anterior (Paso 2). Por último,
si se decide fusionar los datasets obtenidos con otro dataset de un contexto asociado (Paso 3), se invoca
el proceso de Multi-datasets (Paso 3.1).

Tabla 5.4: Macro-algoritmo del módulo DSA.

Entrada: Contexto específico
Procedimiento:
1. Se analiza el contexto de los datos requeridos para obtener las palabras clave de búsqueda.
2. Se invoca el proceso Multi-sources para encontrar una Muestra de Datos utilizando las palabras
clave de búsqueda
3. Si se fusiona la Muestra de Datos:
3.1 Invocar el proceso Multi-dataset de datos para fusionar la Muestra de Datos con el dataset del
contexto asociado.
Salida: Nuevo dataset

A.1. Proceso Multi-sources en DSA

El objetivo de este proceso es encontrar muestras de datos de diferentes fuentes de datasets. En
concreto, las muestras de datos se obtienen utilizando mecanismos de búsqueda basados en Datos
Enlazados, aprovechando el ODS, buscando en cada fuente de dataset registrada en el SDGS y
seleccionando los datasets de muestra que mejor se ajusten al contexto específico requerido. Estas
fuentes de datasets son proporcionadas oficialmente por países/regiones como Europa
(https://data.europa.eu), España (https://datos.gob.es/), Canadá (https://open.canada.ca), Estados
Unidos (https://www.data.gov/), y otros. Los metadatos publicados por estas fuentes siguen el estándar
CKAN (https://ckan.org/), que permite realizar consultas utilizando el lenguaje SPARQL. La Tabla 5.5
muestra el macro-algoritmo del Proceso Multi-sources en DSA. Este proceso comienza preparando las
consultas de búsqueda para cada fuente de dataset (Paso 1). A continuación, se ejecuta cada consulta en
cada fuente de dataset, y se obtiene la lista de posibles datasets (Paso 2). Por último, la lista se ordena
según el grado de coincidencia con el contexto requerido (Paso 3).

Tabla 5.5: Macro-algoritmo del proceso multisources para buscar muestras de datos.

Entrada: Palabras clave de búsqueda
Procedimiento:
1. Prepara las consultas de búsqueda con las palabras clave de búsqueda para cada fuente de dataset
basándose en el paradigma de Datos Enlazados.
2. La búsqueda se ejecuta para cada fuente de dataset y se añade a la lista de posibles muestras de
datos.
3. Se clasifican y seleccionan las muestras de datos que mejor se ajustan a la búsqueda.
Salida: Muestra de datos

A.2. Proceso Multi-datasets en DSA

El objetivo de este proceso es construir datos de muestra que combinen información de diferentes
datasets. En concreto, teniendo un dataset del contexto principal requerido, se busca otro dataset
perteneciente a un contexto asociado al contexto principal. A continuación, se buscan relaciones entre
las características de los datasets; las coincidencias se utilizan como pivotes para la fusión de ambos
datasets. La tabla 5.6 muestra el macroalgoritmo del proceso Multi-datasets en DSA. Este proceso
comienza invocando el proceso Multi-sources para encontrar una Muestra de Datos del Contexto
Asociado (Paso 1). En el Paso 2, busca las similitudes de ambas Muestras de Datos; esta similitud se
basa en el nombre y el tipo de cada característica de la Muestra de Datos Principal y de la Muestra de
Datos del Contexto Asociado. Por último, fusiona la Muestra de Datos Principal y la Muestra de Datos
de Contexto Asociada utilizando las similitudes como pivote (Paso 3), generando una Muestra de Datos
Fusionada.

Tabla 5.6: Macro-algoritmo del proceso multidatasets para fusionar muestras de datos.

Entrada: Muestra de datos principales, palabras clave de búsqueda contextual asociadas
Procedimiento:
1. Se invoca el proceso Multi-sources para encontrar una Muestra de Datos utilizando las Palabras
Clave de Búsqueda de Contexto Asociadas.
2. Busca posibles similitudes entre las características de la Muestra de Datos Principal y la Muestra de
Datos de Contexto Asociada.
3. Fusione ambas Muestras de Datos usando las similitudes como pivote.
Salida: Muestra de datos fusionada

B. Módulo DP

El objetivo de este módulo es transformar el dataset de la muestra en una representación óptima para el
modelo VAE, sabiendo que este tipo de modelo funciona óptimamente con datos que oscilan entre [0 y
1] o [-1 y 1], ya sean datos binarios (digitales) o continuos (analógicos). En este proceso, se le
atribuyen datos textuales o numéricos que representan un conjunto finito específico de categorías o
clases que se procesan como Datos Categóricos, donde los datos numéricos y de alta varianza se
normalizan. La Tabla 5.7 muestra el macro-algoritmo DP, que comienza analizando el dataset para
determinar los procesos que serán necesarios para cada columna de la muestra de datos (Paso 1). Para
las columnas con datos numéricos o con muchos valores diferentes, procede a normalizarlos (Paso 2).
Para las columnas con datos textuales o numéricos que pueden representarse en categorías o clases,
procede a categorizarlas (Paso 3).

Tabla 5.7: Macro-algoritmo del módulo DP para optimizar la muestra de datos.

Entrada: Dataset de muestra
Procedimiento:
1. Se analiza la muestra de datos.
2. Se normalizan los atributos con datos numéricos y alta varianza.
3. Se categorizan los atributos con datos textuales y numéricos con valores finitos.
Salida: Muestra de datos preprocesados

C. Módulo FE

El objetivo de este módulo es analizar las características del dataset de muestra. Concretamente, analiza
la muestra de datos preprocesados generada por el módulo DP, obteniendo nueva información a partir
de las características del dataset y seleccionando las características que ofrecen más información para el
módulo SDG. La Tabla 5.8 muestra el macro-algoritmo del módulo FE. Este proceso comienza con el
análisis del dataset (paso 1). Después, en el paso 1.1, la información se agrega aplicando técnicas de
generación de características como i. Característica de Interacción, ii. Característica Polinómica, iii.
Característica Trigonométrica, iv. Creación de Clusters, v. Combinación de Niveles Raros. En el paso
1.2 se añade información aplicando técnicas de extracción de características como i. Cálculo de
característica basada en la media, ii. Cálculo de característica basada en la mediana y iii. Cálculo de
característica basada en cuartiles. Por último, en el paso 1.3, selecciona las características que ofrecen
más información, aplicando técnicas de Selección de Características como i. Importancia de la
Característica por Permutación. ii. Eliminación de Multicolinealidad. iii. Filtrado por Baja Varianza. Y
iv. Selección de Características usando metaheurísticas como los Algoritmos Genéticos.

Tabla 5.8: Macro-algoritmo de FE para mejorar la muestra de datos.

Entrada: Muestra de datos preprocesados
Procedimiento:
1. Analiza la Muestra de Datos Preprocesada:
1.1. Añade nueva información generada a partir de sus características
1.2. Añade nueva información extraída de sus características.
1.3. Seleccionar las características que aportan más información.
Salida: Muestra de datos mejorada

D. Módulo SDG

El objetivo de este módulo es generar los datos sintéticos a partir de la muestra de datos optimizada en
el módulo anterior. En este proceso, se construye y entrena un modelo de conocimiento que extrae y
aprende automáticamente las características de la muestra de datos utilizando VAE. La Tabla 5.9
muestra el macro-algoritmo SDG, el proceso comienza configurando y construyendo el modelo de
conocimiento que aprenderá las características latentes en la muestra de datos (Paso 1). En el Paso 2 se
procede a entrenar el modelo de conocimiento utilizando VAE y la muestra de datos. Por último, se
genera el dataset sintético utilizando el modelo de conocimiento previamente creado y entrenado (Paso
3).

Tabla 5.9: Macro-algoritmo de SDG para la generación de datos sintéticos.

Entrada: Muestra de datos mejorada
Procedimiento:
1. Se construye el modelo de conocimiento con la configuración deseada.
2. Se entrena el modelo de conocimiento que representa la muestra de datos.
3. Se genera el dataset sintético con el modelo de conocimiento.
Salida: Dataset sintético

5.3 Casos de Estudio

El presente apartado detalla, en la sección 5.3.1, un caso de estudio demostrativo de la activación de los
módulos de la arquitectura mediante el Meta-Algoritmo Autónomo. Posteriormente, las secciones 5.3.2
y 5.3.3 presentan casos de estudio enfocados en la generación de características y en la generación de
datos, respectivamente.

5.3.1 Caso 1: Meta-Algoritmo Autónomo

Esta sección presenta un resumen del trabajo referenciado en [63], cuyos detalles se encuentran en la
sección 5 del artículo presentado en el Anexo 5.B. El caso de estudio se centra en la información
recogida en Café Galavis (Cúcuta, Colombia). Este caso de estudio muestra el proceso de activación de
los módulos de la arquitectura, guiados por el Meta-Algoritmo Autónomo y basados en los
requerimientos de Café Galavis, para generar modelos de conocimiento que resuelven diferentes
problemas. En concreto, nuestra arquitectura ejecuta determinados grupos de pasos en función de los
requerimientos y la información del entorno. La Figura 5.8 muestra estos pasos que se utilizarán en los
experimentos: 1) Transferencia del Modelo, 2) Transferencia de Parámetros, 3) Creación del Modelo,
4) Transferencia de Datos y 5) Generación de Datos Sintéticos.

En este caso de estudio se realizan 5 experimentos, los cuales se llevan a cabo de forma secuencial y
cada uno de ellos se basa en los resultados de los anteriores, lo que permite una retroalimentación
progresiva del sistema. Los experimentos muestran la dinámica de activación de las distintas partes del
Meta-Algoritmo en la arquitectura. Para ello se utiliza la herramienta de trazabilidad implementada en
la arquitectura, que facilita la visualización secuencial de las decisiones tomadas y los conjuntos de

Figura 5.8: Grupos de pasos del meta-algoritmo autónomo.

pasos activados en cada instante de la ejecución. Ahora bien, en esta sección solo detallaremos el
primer experimento, el resto se puede consultar en la sección 5 del artículo presentado en el Anexo 5.B.

El experimento 1 se dedica a evaluar la activación de los módulos de Generación de Datos Sintéticos
(Paso 5) y Creación de Modelos (Paso 3) solicitando un modelo No Supervisado/Clustering a partir del
archivo File1.csv (compuesto por 1.286 registros que incluye características como método de
procesado, variedad de semilla, aroma, sabor, acidez, cuerpo, uniformidad, dulzor y humedad, y otros).
Además, hay que considerar el estado inicial que la arquitectura mantiene para la gestión del proceso
de Meta-Aprendizaje. Esta información se estructura en tablas que contienen el Meta-Modelo (modelos
previamente entrenados), Meta-Dataset (características de los datasets) y Meta-Técnica (algoritmos de
Aprendizaje Automático), los cuales se pueden consultar en la sección 5.1 del artículo presentado en el
Anexo 5.B.

La Figura 5.9 presenta la trazabilidad de la ejecución del Meta-Algoritmo para resolver esta petición.
El primer paso es Init (siempre llamado en todas las ejecuciones), que activa los procesos Dataset
Acquisition y Dataset Preparation. El proceso Datasets Acquisition comprueba si se ha suministrado
un dataset de entrada o si hay que buscarlo con Datos Enlazados. En este caso, se ha suministrado el
dataset de entrada. A continuación, se activa el módulo Datasets Preparation para normalizar las
variables. Entonces, como no hay modelos creados previamente para Unsupervised/Clustering en la
tabla Meta-Model (Ver Tabla 3 en la sección 5.1 del Anexo 5.B), las decisiones 1 y 2 resultaron en
“No” (ver Figuras 5.8 y 5.9). En la decisión 3, se rechazó la generación del modelo porque no se
alcanzó el umbral mínimo de 2000 registros. Por último, en la decisión 4, el resultado es «No» debido a
la ausencia de datasets muy similares en la Tabla de Meta-Datasets (Ver Tabla 2 en la sección 5.1 del
Anexo 5.B). Por lo tanto, se decidió generar datos sintéticos activando el módulo Generate Synthetic
Data para completar el dataset (Paso 5 en la Figura 5.8) y, posteriormente, realizar la activación de
Feature Engineering, para finalmente, crear modelo usando el módulo Create Model (Paso 3 en la
Figura 5.8). El módulo Generate Synthetic Data emplea un VAE para generar datos sintéticos a partir
de conjuntos de datos dispersos. La VAE aprende una representación latente comprimida de los datos
de entrada, capturando sus características más relevantes. A continuación, utiliza esta representación
para generar nuevos datos que siguen una distribución similar a la de los datos originales. Para una
comprensión más detallada del proceso, se recomienda revisar la sección 5.2.2.

Además, como en este experimento no hubo transferencia de modelos ni de parámetros, el Meta-
Algoritmo Autónomo buscó en la tabla de Meta-Técnicas (ver Tabla 1 en la sección 5.1 del artículo
presentado en el Anexo 5.B) las posibles técnicas de Aprendizaje Automático para resolver el problema
de Unsupervised/Clustering. Esto generó la creación de un modelo con cada una de las tres técnicas
encontradas, que se añadieron a la Tabla de Meta-Modelos (ver Tabla 5.10).

Tabla 5.10: Modelos añadidos en la tabla de Meta-Modelos de la arquitectura.

Id_MM Tipo Id_MT P1, P2, Pn VD1 …VDn Métrica Id_MD

MM_05
No supervisado/

Agrupación
MT_05 K=2

Aroma, Sabor, Retrogusto,
Acidez, Cuerpo, Equilibrio,

Uniformidad.

silhouette
index=0.62

File1

MM_06
No supervisado/

Agrupación
MT_07

K=4, Distance technique=
Euclidean, distance
calculation=max,.

Aroma, Sabor, Retrogusto,
Acidez, Cuerpo, Equilibrio,

Uniformidad.

silhouette
index=0.57

File1

MM_07
No supervisado/

Agrupación
MT_06

Epsilon (eps) = 5 and
Minimum Points (minPts):

5.

Aroma, Sabor, Retrogusto,
Acidez, Cuerpo, Equilibrio,

Uniformidad.

DBCV =
0.93

File1

Finalmente, el Meta-Algoritmo Autónomo responde con el mejor modelo alcanzado (ver Tabla 5.10).
La Figura 5.10 muestra el mejor rendimiento (Métricas) alcanzado utilizando DBScan con 0,9315
(DBCV), muy próximo a uno. Este modelo clasificó la calidad del café en tres grupos: baja, media y
alta.

Figura 5.9: Trazabilidad de la búsqueda de un modelo para el experimento 1.

5.3.2 Caso 2: Generación de Características

Este escenario surge cuando la Arquitectura de Meta-Aprendizaje requiere la aplicación de ingeniería
de características, específicamente, la generación de características a partir de los datasets. La sección
IV del artículo [69] presentado en el Anexo 5.C realiza una descripción detallada. El contexto en el que
se desarrolla este caso de estudio se centra en la generación de características de un dataset clásico
utilizado en muchos artículos, que permite la clasificación multiclase a partir de 150 instancias con 4
características (SepalLength, SepalWidth, PetalLength y PetalWidth) y una variable «Species» con 3
clases (Setosa, Versicolor y Virginica), para clasificar las especies de la planta Iris.

Como este generador trabaja con un modelo CNN, el primer paso para optimizar el dataset es
transformarlo en imágenes. Para ello, se utilizan los métodos disponibles en la librería TINTOlib de
Python (ver sección 5.2.1.A), estos métodos en general asignan los datos a posiciones o escalas de
color específicas dentro de los píxeles de la imagen generada. La figura 5.11 muestra las
transformaciones a imágenes aplicadas a la primera instancia del conjunto de datos (SepalLength=5,1,
SepalWidth=3,5, PetalLength=1,4, PetalWidth=0,2 y Species=1) utilizando todos los métodos
disponibles en dicha librería. Las transformaciones se presentan de izquierda a derecha y de arriba
abajo, en el orden siguiente de los métodos: TINTO, SuperTML, IGTD, REFINED, BarGraph,
DistanceMatrix y Combination.

Figura 5.10: Resultado del experimento 1 utilizando DBScan.

Luego, se carga el modelo preentrenado ResNet-50 de la biblioteca PyTorch
(https://pytorch.org/vision/stable/models.html), se eliminan las capas de clasificación, y se añade una
capa de aplanamiento para vectorizar la salida. Finalmente, utilizando el modelo modificado y el
conjunto de datos multidimensional (imágenes) obtenido en el paso anterior, se procede a generar la
representación vectorial de las características. Cabe destacar que este modelo genera 2048
características para cada imagen, debido a que la capa intermedia final del modelo tiene esa cantidad de
neuronas de salida (ver figura 5.12). Estas características son el producto de las capas convolucionales.
Las primeras capas convolucionales identifican elementos de bajo nivel, como bordes y texturas, y a
medida que la información progresa, se detectan características cada vez más complejas y abstractas.
Así, el resultado es una representación compacta y de alto nivel de la información relevante extraída de
la entrada original.

5.3.3 Caso 3: Generación de Datos Artificiales

El presente escenario surge ante la necesidad de la Arquitectura de Meta-Aprendizaje de recurrir a la
generación de datos artificiales. Esta necesidad se manifiesta cuando los datos disponibles son
insuficientes para construir y entrenar eficazmente un modelo de Aprendizaje Automático. A
continuación, se ofrece un resumen del trabajo descrito en [38], cuyos detalles se encuentran en la
sección III del artículo presentado en el Anexo 5.D. El contexto en el que se desarrolla este caso de
estudio se centra en la gestión energética de redes inteligentes. En este caso es necesario generar
conjuntos de datos sintéticos para diferentes tareas con las características de la muestra de datos. Para
ello, se utiliza un modelo VAE, con los siguientes parámetros: i) original_dim: número de neuronas de

Figura 5.11: Transformaciones de la primera
instancia del dataset mediante TINTOlib.

Figura 5.12: Características generadas por cada imagen pasada por el modelo CNN-FG.

entrada o dimensión de los datos de entrada, ii) intermediate_dim: número de neuronas en la capa
oculta intermedia, tiene un valor por defecto: 256. iii) latent_dim: número de neuronas en el espacio
latente, valor por defecto: 100. iv) batch_size: tamaño del lote, valor por defecto: 100, v) epochs:
número de epochs, valor por defecto: 50, vi) epsilon: desviación estándar del tensor, valor por defecto:
0.5. Con esta información, se definen los valores de los parámetros para configurar el modelo de
conocimiento que permitirá generar los datos sintéticos (ver Figura 2 en la sección III del artículo
presentado en el Anexo 5.D).

Finalmente, se entrena el modelo y se genera el conjunto de datos con N registros utilizando el modelo
entrenado. La Figura 5.13 muestra parcialmente el conjunto de datos generado utilizando el modelo de
generación aprendido, concretamente, cuatro registros en los que cada columna es una variable
diferente.

5.4 Entorno de Meta-Aprendizaje ACODAT

Esta sección presenta un resumen extenso del trabajo presentado en [78], cuyos detalles se encuentran
en la sección 3 del artículo presentado en el Anexo 5.F. En este trabajo hace uso de la Arquitectura de
Meta-Aprendizaje para la creación automática de los modelos de conocimiento para ACODAT
(Autonomous Cycles of Data Analysis Tasks). El mecanismo de Meta-Aprendizaje ayuda a ACODAT a
aprender a adaptarse rápidamente a nuevos escenarios, usando información como las fuentes de datos,
pero además, las meta-características y los meta-modelos ya definidos.

5.4.1 Sistema Arquitectónico ACODAT

La figura 5.14 muestra la estructura general del marco propuesto. Esta arquitectura utiliza una base de
conocimientos que incluye información sobre los modelos de conocimiento almacenados previamente
en ella, así como los datasets y los hiperparámetros de las técnicas utilizadas para construirlos. Cuando
es necesario construir un nuevo modelo para un nuevo dataset, el sistema compara la similitud del
nuevo dataset con los datasets existentes en el marco para decidir el procedimiento a seguir. En
concreto, las opciones son utilizar un modelo existente si el nuevo dataset es muy similar al utilizado
para construir el modelo, utilizar solo los parámetros si son algo similares, y construir un nuevo modelo
o generar datos sintéticos si no son muy similares. Así, esta arquitectura permite reutilizar
conocimientos previos e integrar nuevos conocimientos. A continuación se describen brevemente los
módulos de la arquitectura:

Figura 5.13: Generación de datos sintéticos.

 Management Module: Este módulo gestiona la base de conocimientos, que consta de una tabla
de metamodelos, una tabla de metadatos y una tabla de metatécnicas. Cada modelo de
conocimiento del metamodelo está vinculado a un conjunto de datos (en los metadatos) y a la
técnica de Aprendizaje Automático (en las Meta-Techniques) utilizada para crearlo. Además, el
metamodelo almacena las métricas de calidad del modelo y otros datos relevantes. Los
metadatos contienen detalles sobre los conjuntos de datos, como sus atributos y ubicación. Las
metatécnicas almacenan información sobre las técnicas de Aprendizaje Automático, incluidos
los valores óptimos de sus parámetros.

 ACODAT Module: Cuando se recibe un nuevo requisito para construir un modelo de
conocimiento sobre un conjunto de datos, se activa este módulo. En primer lugar, extrae
características del dataset entrante. A continuación, compara el nuevo dataset con los datasets
anteriores que se han utilizado para construir modelos de conocimiento previos, para generar
una clasificación de similitud.

 Adaptation Module: El módulo de adaptación toma decisiones basadas en el ranking de
similitud. Basándose en este ranking, el módulo puede decidir varias cosas: realizar una
transferencia de modelo (reutilizarlo) si son muy similares, realizar una transferencia de
parámetros (reutilizar los parámetros de las técnicas) si son algo similares, realizar una
transferencia de datos (si no son muy similares), o generar datos sintéticos (en estos dos últimos
casos, si al nuevo conjunto de datos le faltan datos). En todos los casos, se construye un nuevo
modelo con el nuevo conjunto de datos y se invoca el módulo de gestión.

El módulo ACODAT utiliza un ciclo autonomo para guiar el proceso de optimización de la creación de
los modelos que se instancian, garantizando la selección de los recursos (modelos, técnicas o datos,
según el tipo de transferencia que se vaya a realizar) para adaptar el ACODAT. En la sección siguiente,
se detallará las tareas del módulo ACODAT y su impacto en la arquitectura general.

Figura 5.14: Nueva arquitectura MTL ACODAT.

A. Tareas del módulo ACODAT

El módulo ACODAT se encarga de supervisar la ejecución de los demás módulos del framework, pero
también, del ACODAT que se está adaptando. Cuando se activa este módulo, se ejecuta un macro-
algoritmo que comienza con la tarea Observación, que supervisa y recopila datos e información del
sistema o entorno que se está supervisando (información sobre los metadatos, las metatécnicas y los
metamodelos), pero también sobre el ACODAT que se está supervisando (tareas que se están
ejecutando, técnicas y conjuntos de datos utilizados, etc.). A continuación, la tarea Análisis lleva a cabo
los procesos destinados a interpretar y comprender los datos recogidos para diagnosticar lo que está
sucediendo en el contexto supervisado, especialmente, sobre las necesidades de adaptación a nivel de
cada tarea del ACODAT supervisado. Por último, se activa la tarea Decisión, que en este caso implica
acciones encaminadas a construir los modelos de aprendizaje para el ACODAT que se está
instanciando. En este caso, invoca al módulo de adaptación para determinar qué tipo de transferencia
(de modelos, datos, entre otros) realizar para cada tarea del ACODAT supervisado. Finalmente, este
módulo, al ser un ciclo autónomo, observa el comportamiento del ACODAT que se está instanciando
para optimizarlo (los resultados de los modelos de aprendizaje son revisados nuevamente en las tareas
de Observación y Análisis, iniciando una nueva iteración del ciclo).

5.4.2 Caso de estudio

Esta sección presenta un resumen del trabajo presentado en [78], cuyos detalles se encuentran en la
sección 4 del artículo presentado en el Anexo 5.F. La arquitectura ACODAT se implementó en la
empresa Café Galavis. El ACODAT se diseñó para automatizar el proceso de producción de esta
empresa y está compuesto por las siguientes tareas:

 Tarea 1. Cantidad de insumos a transformar: Analiza diversos aspectos como la evolución
histórica y los usos de la materia prima para generar el producto (la semilla, en este caso).
Requiere un modelo de diagnóstico para determinar la materia prima y la cantidad a
transformar.

 Tarea 2. Calidad de los insumos para el proceso: Mediante esta tarea se establece la calidad de
estos insumos, en función de factores como las prácticas culturales y los servicios de
almacenamiento y transporte. En esta tarea se utiliza un modelo predictivo para determinar esta
calidad.

 Tarea 3. Método de procesamiento a utilizar: La identificación de los factores relacionados con
el método de procesamiento del café, como el secado natural, el lavado natural, el secado
mecánico y la selección automática o manual, es la función principal de esta tarea. En esta tarea
se utiliza para ello un modelo de clasificación.

Este módulo comienza activando sus tareas Observation y Analysis. La tarea Observation recoge datos
e información de la arquitectura y del ACODAT supervisado. A continuación, la tarea Analysis analiza
el ACODAT que se va a adaptar, especificando los tipos de tareas de análisis de datos que lo componen
y las fuentes de datos que se van a utilizar para adaptar el ACODAT, entre otras cosas (véase la Tabla
5.11, con los resultados de esta tarea).

Tabla 5.11: Resumen de las tareas del ciclo autónomo supervisado.

Tarea
Tipo de
Modelo

Tipo de Técnica Dataset a usar

1. Calidad del grano de café Diagnóstico No supervisado
File1.csv: aroma, sabor, acidez, cuerpo, uniformidad y
otras variables.

2. Disminución del grano
en el proceso de tostado.

Predictivo Supervisado
File2.csv: peso crudo, peso tostado, encogimiento,
humedad ambiental, densidad, color y otras variables.

3. Método de
procesamiento del café

Clasificación Supervisado
File1.csv: método de transformación, variedad de semillas,
aroma, sabor, acidez, cuerpo, uniformidad, dulzor y
humedad, entre otras variables.

Luego, se ejecuta el módulo Adaptation, que es el encargado de construir los distintos modelos (ver
sección 4 del Anexo 5.F). En la Tabla 5.12 se detallan los resultados y las métricas de los mejores
modelos construidos para cada tarea (ver tabla 5.11). Finalmente, el módulo ACODAT verifica la
calidad de los nuevos modelos como resultado del módulo Adaptation.

Tabla 5.12: Resultado de los mejores modelos construidos para cada tarea del ciclo autónomo
supervisado.

Tarea ID_Modelo Algoritmo Métrica Dataset usado

1. Calidad del grano de café 6 DBScan DBCV=0.9 File1.csv

2. Disminución del grano en el
proceso de tostado.

8
Gradient Boosting

Regressor
R2=0.9547, MAE=0.04,

RMSE=0.19
File2.csv

3. Método de procesamiento del café 3
Random Forest

Classifier

Accuracy=0.9217,
Recall=0.9217,

Precision=0.9264,
F1=0.9224

File1.csv

6 Conclusiones y Trabajos Futuros

6.1 Conclusiones

La presente investigación ha abordado la generación de conocimiento en Ambientes Inteligentes
mediante la integración de Datos Enlazados con mecanismos de Aprendizaje Automático, Meta-
Aprendizaje y Lógica Dialéctica. Se partió de la necesidad de superar la falta de una estructura
semántica en la Web y la complejidad de explotar inteligentemente el conocimiento en AmI,
especialmente en presencia de información inconsistente o ambigua. La investigación se propuso
definir una arquitectura computacional que integrara estas capacidades para la generación y explotación
de conocimiento en AmI.

En primer lugar, se presentó una ampliación del middleware MiSCi con una capa de Datos Enlazados.
Esta capa, guiada por la metodología MEDAWEDE, permite identificar, describir, conectar, relacionar
y explotar grandes volúmenes de datos generados por sensores, usuarios y aplicaciones en una ciudad
inteligente. Esta capa automatiza el enriquecimiento semántico y la explotación de los datos usando el
paradigma de Datos Enlazados mediante cuatro agentes especializados. El Agente ILDA se encarga de
la extracción, curación y modelado de la información generada por los propios agentes de MiSCi,
enriqueciéndola con contexto y ontologías. Así mismo, el Agente ELDA realiza una función similar
para datos provenientes de fuentes exteriores como redes sociales. El Agente LDIA se dedica a vincular
la información enriquecida por ILDA o ELDA con otros conjuntos de datos, para luego publicarlos
como Datos Enlazados. Finalmente, el Agente LDKA ofrece mecanismos para explotar el conocimiento
vinculado a estos datos, proporcionando capacidades avanzadas como análisis semántico, manejo de
ambigüedad, recomendación de información, generación de modelos de Aprendizaje Automático, y
aprendizaje de ontologías. Además, se propuso una arquitectura para la generación automática y
enriquecimiento de ontologías emergentes (AOGS). Esta arquitectura permite crear y poblar ontologías
con conocimiento del dominio y vincularlas con fuentes externas de Datos Enlazados, facilitando la
construcción de bases de conocimiento semánticamente ricas para contextos específicos.

En segundo lugar, se desarrolló un Sistema de Recomendación Híbrido (HRS) capaz de integrar lógica
descriptiva/dialéctica con Datos Enlazados. Este sistema es capaz de resolver situaciones con
información inconsistente o ambigua, lo que representa un avance significativo frente a los sistemas de
recomendación tradicionales. Su arquitectura se compone de dos motores de razonamiento y cinco
gestores de información. Dentro de los motores de razonamiento se encuentra DeLE y DiLE. DeLE
explota diversas fuentes de Datos Enlazados mediante consultas basadas en tripletas. DiLE responde
mediante consultas construidas como conjeturas sobre modelos de lógica de primer orden, detectando y
razonando en estados de ambigüedad o inconsistencia. En cuanto a los gestores de información, VM
identifica y selecciona los vocabularios y ontologías necesarios para procesar las peticiones,

apoyándose en el QM para extraer nuevo conocimiento si es preciso. QM prepara y genera las
consultas para DeLE (basadas en tripletas) y para DiLE (basadas en conjeturas). ConM se encarga de
transformar los datos para permitir el intercambio de información entre los razonadores. RM fusiona y
filtra la información obtenida por los razonadores, validando y clasificando las recomendaciones.
Finalmente, CM es el responsable de todas las decisiones del HRS, orquestando la invocación de los
gestores y razonadores, utilizando meta-razonamiento para verificar consultas, identificar conceptos,
extraer conocimiento y filtrar recomendaciones. Esta integración permite la extracción semántica, la
verificación y el filtrado de recomendaciones en escenarios complejos como el diagnóstico médico o la
evaluación de competencias profesionales. Asimismo, se demostró cómo la Lógica Dialéctica permite
modelar y razonar sobre fenómenos como la vaguedad, declaraciones contingentes sobre el futuro,
discurso ficticio, fallos de presuposición y razonamiento contrafáctico en el contexto de las
competencias profesionales, lo que es crucial para comprender el significado real de las competencias
en perfiles digitales.

Por último lugar, se diseñó una arquitectura de Meta-Aprendizaje para la generación de modelos de
Aprendizaje Automático basada en Datos Enlazados. El aspecto más innovador es la implementación
de un Meta-Algoritmo Autónomo que automatiza la construcción de modelos Aprendizaje Automático,
seleccionando las técnicas y herramientas más apropiadas e integrando capacidades avanzadas. Esta
arquitectura tiene cuatro módulos especializados que orquestan el proceso completo. El módulo de
ingeniería de conjuntos de datos (DEM) se encarga de la preparación y optimización de los conjuntos
de datos. El módulo de ingeniería de características (FEM) se dedica a la creación y selección de
características relevantes. Existe un módulo específico para la generación de características con CNNs
(EAFECNN), donde datos tabulares se transforman en imágenes que son insumo para las CNNs.
Finalmente, el Módulo de ingeniería de modelos (MEM) se centra en el diseño, entrenamiento y
evaluación de modelos de Aprendizaje Automático. Además, integra de forma inteligente mecanismos
de aprendizaje por transferencia (de modelos, parámetros y datos) y la generación de datos sintéticos
(utilizando VAE en la arquitectura SDGS). También, se ilustró su aplicación en la optimización de
cadenas de producción agroindustrial, demostrando su capacidad para adaptarse rápidamente a nuevos
escenarios y construir modelos de conocimiento eficientes.

Esta arquitectura fue extendida para la creación automática de modelos de conocimiento para
ACODAT, facilitando su adaptación rápida a nuevos escenarios en contextos como la automatización
de cadenas de producción agroindustrial. Esto se logra mediante la adición de un ciclo autónomo que
supervisa la ejecución de sus módulos a través de tareas como la Observación (recopila datos del
sistema y del ACODAT supervisado), el Análisis (interpreta los datos para diagnosticar necesidades de
adaptación) y la Decisión (construye modelos de aprendizaje y determina el tipo de transferencia de
conocimiento a realizar, como de modelos o datos).

La validación de las arquitecturas y mecanismos propuestos en esta tesis se ha llevado a cabo mediante
diversos casos de estudio prácticos y simulados, demostrando su aplicabilidad y robustez en escenarios
complejos de AmI. En el capítulo 3, la ampliación del middleware MiSCi con una capa de Datos
Enlazados se ejemplificó en un escenario de ciudad inteligente, abordando la gestión de alarmas y

recomendaciones de servicios. Asimismo, la arquitectura AOGS fue validada en el dominio del
COVID-19, evidenciando su capacidad para generar y enriquecer ontologías de forma autónoma. En el
capítulo 4 se ilustró la utilidad del Sistema de Recomendación Híbrido en el diagnóstico médico y en el
análisis de competencias profesionales, donde la Lógica Dialéctica resolvió inconsistencias y
ambigüedades como la vaguedad y el discurso ficticio. Finalmente, en el capítulo 5 se demostró la
funcionalidad de la arquitectura de Meta-Aprendizaje y su extensión con un Meta-Algoritmo
Autónomo. Se hizo una prueba general de la extensión en experimentos con un dataset de la empresa
Café Galavis, enfocándose en la automatización de su cadena de producción agroindustria. Por
ejemplo, se usó el Meta-Algoritmo para la creación de modelos no supervisados, lo que permitió, por
ejemplo, clasificar la calidad del café en grupos. Además, se hicieron experimentos con algunas partes
específicas de la arquitectura de Meta-Aprendizaje. Por ejemplo, se evaluó el proceso de generación de
datos sintéticos empleando un VAE para completar datasets dispersos, o la generación de características
para clasificación multiclases. Para esto último, la arquitectura EAFECNN transformó datos tabulares
en imágenes, que luego fueron procesadas por CNNs para generar características relevantes.
Finalmente, se hicieron experimentos para la generación de datos artificiales (o sintéticos) para la
gestión energética de redes inteligentes, mediante la arquitectura SDGS, que combina el paradigma de
Datos Enlazados con la técnica VAE. Estos casos confirman la efectividad de la integración de Datos
Enlazados, Aprendizaje Automático, Meta-Aprendizaje y Lógica Dialéctica para la generación y
explotación de conocimiento en AmI, incluso frente a información inconsistente y ambigua.

En general, esta tesis ha logrado definir, especificar y validar arquitecturas computacionales que
explotan el paradigma de Datos Enlazados como eje central para la generación, gestión y explotación
inteligente del conocimiento en AmI, integrando de manera novedosa y robustas técnicas de
Aprendizaje Automático, Meta-Aprendizaje y Lógica Dialéctica. Se han superado limitaciones
existentes en la literatura al abordar la complejidad de la información, incluyendo la inconsistencia y la
ambigüedad, al automatizar tareas que tradicionalmente requieren intervención humana.

A pesar de la demostrada aplicabilidad y robustez de las arquitecturas propuestas (MiSCi-LDL, AOGS,
HRS y la arquitectura de Meta-Aprendizaje) en diversos casos de estudio prácticos y simulados en
escenarios complejos de AmI, la implementación y validación exhaustiva en entornos reales de AmI de
gran escala y en tiempo real, junto con la optimización de su rendimiento y escalabilidad, representan
un desafío exigente por evaluar. Si bien el presente trabajo ha sentado bases sólidas para la gestión
inteligente del conocimiento en presencia de grandes volúmenes de datos, la naturaleza inherentemente
dinámica, heterogénea y en constante evolución de AmI reales, como ciudades inteligentes, hogares
conectados o sistemas de salud integrados, demanda una investigación dedicada a probar y optimizar
propuestas como estas en esos contextos. No se realizó una integración completa de todas estas
herramientas en un entorno real, lo cual tiene sus propias complejidades. Esto incluye el posible
aprovechamiento de paradigmas como la computación en la niebla o el borde, los cuales serán
fundamentales para confirmar y potenciar la robustez y adaptabilidad de las soluciones propuestas a
escenarios dinámicos, asegurando su eficiencia y viabilidad a largo plazo en el espectro completo de
los AmI del futuro.

6.2 Trabajos Futuros

La investigación realizada abre múltiples vías para trabajos futuros, entre las que se destacan:

 Extensión de la Lógica Dialéctica en otros contextos: Explorar la aplicación del
razonamiento dialéctico para abordar contradicciones y ambigüedades en otros dominios, más
allá del diagnóstico médico y las competencias profesionales, como la gestión de crisis, ya que
la naturaleza dinámica e impredecible de las crisis hace que la capacidad de la Lógica
Dialéctica para manejar la incertidumbre y las inconsistencias sea una herramienta poderosa
para la toma de decisiones.

 Optimización del rendimiento de las arquitecturas: Investigar métodos para optimizar el
rendimiento y la escalabilidad de las arquitecturas propuestas (MiSCi-LDL, AOGS, HRS y la
arquitectura de Meta-Aprendizaje) en entornos AmI de gran escala y en tiempo real, lo que
podría implicar el uso de computación en la niebla o el borde.

 Desarrollo de interfaces y herramientas de usuario: Crear interfaces más intuitivas y
herramientas de visualización para que los usuarios finales puedan interactuar con los sistemas
de recomendación y los generadores de ontologías, facilitando la interpretación de las
decisiones y el conocimiento generado.

 Abordaje de la explicabilidad en IA híbrida: Profundizar en los métodos de explicabilidad de
los modelos de Aprendizaje Automático y las decisiones del HRS, especialmente en la
intersección de lógicas descriptivas/dialécticas y técnicas de Aprendizaje Automático, para
explicar de forma integral y coherente el razonamiento combinado y las decisiones que emergen
de esta compleja interacción de paradigmas híbridos, facilitando que los usuarios comprendan
la razón de las recomendaciones.

 Casos de estudio en entornos reales: Implementar y validar las arquitecturas propuestas en
casos de estudio más complejos y realistas dentro de AmI, por ejemplo, en sistemas de gestión
de tráficos o emergencias urbanas, sistemas de asistencia a personas discapacitadas o mayores,
o sistemas de salud conectados, lo que permitirá evaluar su robustez y adaptabilidad a
escenarios dinámicos.

7 Referencias Bibliográficas

[1] Dos Santos, R., Rangel, C., Rodríguez, T. (2018). Minería de la Web Semántica. En: Aguilar, J. (ed), Introducción a la
Minería Semántica. Fondo Editorial Universidad Nacional Experimental del Táchira (FEUNET), San Cristóbal, Venezuela,
pp. 101-116.

[2] Aguilar, J., Rodriguez, T. (2018). Generalidades de la Minería Semántica. En: Aguilar, J. (ed), Introducción a la Minería
Semántica. Fondo Editorial Universidad Nacional Experimental del Táchira (FEUNET), San Cristóbal, Venezuela, pp. 13-
24.

[3] Dos Santos, R., Aguilar, J. (2018). Enlazado de Datos. En: Aguilar, J. (ed), Introducción a la Minería Semántica. Fondo
Editorial Universidad Nacional Experimental del Táchira (FEUNET), San Cristóbal, Venezuela, 177-216.

[4] Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked datathe story so far. Semantic services, interoperability and web
applications: emerging concepts (2009), 205–227.

[5] Augusto, J. C., Nakashima, H., & Aghajan, H. (2010). Ambient intelligence and smart environments: A state of the
art. Handbook of ambient intelligence and smart environments, 3-31. https://doi.org/10.1007/978-0-387-93808-0_1

[6] Cordero, J., Dos Santos, R. (2020). Reconocimiento de emociones desde un enfoque multimodal. En: Aguilar, J. (ed),
Introducción a la Computación Afectiva. Fondo Editorial Universidad Nacional Experimental del Táchira (FEUNET), San
Cristóbal, Venezuela, (pp 101-116).

Paz López, A. (2015). HI3: una aproximación integrada a la construcción de sistemas de inteligencia ambiental, Tesis
Doctoral, Universidade da Coruña, (pp 15), 2015.

[8] Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge university
press.

[9] Dos Santos, R., Aguilar, J., & Puerto, E. (2021, October). A meta-learning architecture based on linked data. In 2021
XLVII Latin American Computing Conference (CLEI) (pp. 1-10). IEEE. https://doi.org/10.1109/CLEI53233.2021.9640223

[10] Pelletier, F. J., Sutcliffe, G., & Hazen, A. P. “Automated Reasoning for the Dialetheic Logic RM3”. In 30th
International Florida Artificial Intelligence Research Society Conference, FLAIRS 2017. AAAI Press. 2017.

[11] Architecture Working Group of the Software Engineering Committee. (2000). Recommended Practice for Architectural
Description of Software Intensive Systems. IEEE Standards Department. https://doi.org/10.1109/IEEESTD.2000.91944

[12] Bernasconi, E., Ceriani, M., Di Pierro, D., Ferilli, S., & Redavid, D. (2023). Linked data interfaces: a survey.
Information, 14(9), 483. https://doi.org/10.3390/info14090483

[13] Pedro, A., Pham-Hang, A. T., Nguyen, P. T., & Pham, H. C. (2022). Data-driven construction safety information
sharing system based on linked data, ontologies, and knowledge graph technologies. International journal of environmental
research and public health, 19(2), 794. https://doi.org/10.3390/ijerph19020794

[14] Thalhath, N., Nagamori, M., & Sakaguchi, T. (2023, March). Application Profile Driven Data Acquisition for
Knowledge Graph and Linked Data Generation in Crowdsourced Data Journalism. In Proceedings of the International
Conference on Dublin Core and Metadata Applications. Dublin Core Metadata Initiative.
https://doi.org/10.23106/dcmi.953151686

[15] Yang, P., Bi, G., Qi, J., Wang, X., Yang, Y., & Xu, L. (2025). Multimodal wearable intelligence for dementia care in
healthcare 4.0: A survey. Information Systems Frontiers, 27(1), 197-214. https://doi.org/10.1007/s10796-021-10163-3

[16] Favarato, G., Clemens, T., Cunningham, S., Dibben, C., Macfarlane, A., Milojevic, A., ... & Hardelid, P. (2021). Air
Pollution, housing and respiratory tract Infections in Children: NatIonal birth Cohort study (PICNIC): study protocol. BMJ
open, 11(5), e048038. https://doi.org/10.1136/bmjopen-2020-048038

[17] Spieldenner, D., Antakli, A., Spieldenner, T., & Sahota, H. Semantic Support Points for on the Fly Knowledge
Encoding in Heterogenous Systems. https://doi.org/10.5220/0012919000003838

https://doi.org/10.1007/978-0-387-93808-0_1
https://doi.org/10.1109/IEEESTD.2000.91944
https://doi.org/10.3390/info14090483
https://doi.org/10.3390/ijerph19020794
https://doi.org/10.23106/dcmi.953151686
https://doi.org/10.1007/s10796-021-10163-3
https://doi.org/10.1136/bmjopen-2020-048038
https://doi.org/10.1109/CLEI53233.2021.9640223
https://doi.org/10.5220/0012919000003838

[18] Bühmann, L., Lehmann, J., Westphal, P., & Bin, S. (2018, April). Dl-learner structured machine learning on semantic
web data. In Companion Proceedings of the International World Wide Web Conferences Steering Committee 2018 (pp. 467-
471). https://doi.org/10.1145/3184558.3186235

[19] Bühmann, L., Lehmann, J., & Westphal, P. (2016). DL-Learner—A framework for inductive learning on the Semantic
Web. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 39, 15-24.
https://doi.org/10.1016/j.websem.2016.06.001

[20] Westphal, P., Grubenmann, T., Collarana, D., Bin, S., Bühmann, L., & Lehmann, J. (2022). Spatial concept learning and
inference on geospatial polygon data. Knowledge-Based Systems, vol. 241, p. 108233.
https://doi.org/10.1016/j.knosys.2022.108233

[21] Westphal, P., Vahdati, S., & Lehmann, J. (2022, February). A simulated annealing meta-heuristic for concept learning in
description logics. In International Conference on Inductive Logic Programming. Cham: Springer International Publishing.
p. 266-281. https://doi.org/10.1007/978-3-030-97454-1_19

[22] Koppisetti, V. S. K. (2024). Meta Learning: Harnessing AI to Optimize Machine Learning Models. ESP International
Journal of Advancements in Science & Technology (ESP-IJAST) Volume, 2024, vol. 2, pp. 27-35.
https://www.espjournals.org/IJAST/ijast-v2i2p106

[23] Sayed, E., Maher, M., Sedeek, O., Eldamaty, A., Kamel, A., & El Shawi, R. (2024). GizaML: A Collaborative Meta-
learning Based Framework Using LLM For Automated Time-Series Forecasting. In EDBT. pp. 830-833.
http://doi.org/10.48786/edbt.2024.81

[24] Rodríguez, T., Dos Santos, R., & Aguilar, J. (2017). Metodología para el desarrollo de aplicaciones Web utilizando
datos enlazados. In Conferencia Nacional de Computación, Informática Y Sistemas (CoNCISa 2017) (Vol. 5, pp. 978-980).

[25] Ruth, L., Wood, D., Zaidman, M., & Hausenblas, M. (2014). Linked Data: Structured data on the Web. Simon and
Schuster. Manning Publications Co.

[26] Tenesaca-Luna, G., Dos Santos, R., Moreno, K. (2018). Minería de Grafos. En: Aguilar, J. (ed), Introducción a la
Minería Semántica. Fondo Editorial Universidad Nacional Experimental del Táchira (FEUNET), San Cristóbal, Venezuela,
pp. 150-176.

[27] Markman, A. B. (2013). Knowledge representation. Psychology Press.

[28] Gruber, T. (2008). Ontology. Entry in the Encyclopedia of Database Systems.

[29] da Costa, T. I. A. (2013). Publishing Relational Data as Linked Data (Master's thesis, Universidade do Porto
(Portugal)).

[30] Watson, M. (2010). Practical Semantic Web and Linked Data Applications. Mark Watson.

[31] Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist: effective modeling in RDFS and OWL.
Elsevier.

[32] Bench-Capon, T. J. (2014). Knowledge representation: An approach to artificial intelligence (Vol. 32). Elsevier.

[33] El Naqa, I., & Murphy, M. J. (2015). What is machine learning?. In machine learning in radiation oncology. Springer,
Cham. pp. 3-11, 2015.

[34] Dey, A. (2016). Machine learning algorithms: a review. International Journal of Computer Science and Information
Technologies (IJCSIT), Vol, 7 no 3, pp. 1174-1179, 2016.

[35] Aref, S., J. Shortle, L. Sherry. (2024). Generating synthetic flight tracks for collision risk safety analysis: Variational
autoencoders with a single seed track. In Proceedings of the Integrated Communications, Navigation, and Surveillance
Conference, Herndon, VA.

[36] Hubert, N., Monnin, P., D’aquin, M., Monticolo, D., & Brun, A. (2024, May). PyGraft: Configurable Generation of
Synthetic Schemas and Knowledge Graphs at Your Fingertips. In Semantic Web-21st International Conference, ESWC
2024. https://doi.org/10.5281/zenodo.10243209

[37] Dos Santos, R., & Aguilar, J. (2024). A synthetic data generation system based on the variational-autoencoder
technique and the linked data paradigm. Progress in Artificial Intelligence, 13(2), 149-163. https://doi.org/10.1007/s13748-
024-00328-x

https://doi.org/10.1145/3184558.3186235
https://doi.org/10.1016/j.websem.2016.06.001
https://doi.org/10.1016/j.knosys.2022.108233
https://doi.org/10.1007/978-3-030-97454-1_19
https://doi.org/10.5281/zenodo.10243209
https://www.espjournals.org/IJAST/ijast-v2i2p106
https://doi.org/10.1007/s13748-024-00328-x
https://doi.org/10.1007/s13748-024-00328-x
http://doi.org/10.48786/edbt.2024.81

[38] Dos Santos, R., Aguilar, J., & R-Moreno, M. D. (2022, October). A synthetic Data Generator for Smart Grids based on
the Variational-Autoencoder Technique and Linked Data Paradigm. In 2022 XVLIII Latin American Computer Conference
(CLEI) (pp. 1-7). IEEE. https://doi.org/10.1109/CLEI56649.2022.9959918

[39] Krichen, M. (2023). Convolutional neural networks: A survey. Computers, vol. 12, no 8, p. 151.
https://doi.org/10.3390/computers12080151

[40] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like
people. Behavioral and brain sciences, 40. https://doi.org/10.1017/S0140525X16001837

[41] Yao, H., Wu, X., Tao, Z., Li, Y., Ding, B., Li, R., & Li, Z. (2020). Automated relational meta-learning. In International
Conference on Learning Representations (ICLR 2020). https://doi.org/10.48550/arXiv.2001.00745

[42] Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine learning: methods, systems, challenges (p. 219).
Springer Nature. https://doi.org/10.1007/978-3-030-05318-5

[43] Velarde, J. (1977). LA LOGICA DIALECTICA (1). Teorema: Revista internacional de filosofía, 7(2), 129-140.

[44] Pulcini, G., & Varzi, A. C. (2018). Paraconsistency in classical logic. Synthese, 195(12), 5485-5496.

[45] Kamide, N., & Wansing, H. (2015). Proof theory of N4-related paraconsistent logics (Vol. 54). London: College
Publications.

[46] Dos Santos, R., Aguilar, J., & Rodríguez, T. (2019). Una Revisión de la Literatura sobre Datos Enlazados. Revista
Ingeniería al Día, 5(1), 54-82.

[47] Aguilar, J., Jerez, M., Mendonca, M., & Sánchez, M. (2016). MiSCi: autonomic reflective middleware for smart cities.
In Technologies and Innovation: Second International Conference, CITI 2016, Guayaquil, Ecuador, November 23-25, 2016,
Proceedings 2 (pp. 241-253). Springer International Publishing. https://doi.org/10.1007/978-3-319-48024-4

[48] Aguilar, J., Sanchez, M. B., Jerez, M., Mendonca, M. (2019). An Extension of the MiSCi Middleware for Smart Cities
Based on Fog Computing Smart Cities and Smart Spaces: Concepts, Methodologies, Tools, and Applications (pp. 778-798).
Hershey. https://doi.org/10.4018/978-1-5225-7030-1.ch035

[49] Aguilar, J., Jerez, M., Mendonça, M., & Sánchez, M. (2020). Performance analysis of the ubiquitous and emergent
properties of an autonomic reflective middleware for smart cities. Computing, 102(10), 2199-2228.
https://doi.org/10.1007/s00607-020-00799-5

[50] Dos Santos, R., Aguilar, J., Rodríguez, T. (2020). Middleware MiSCi para Ciudades Inteligentes extendido con Datos
Enlazados/MiSCi Middleware for Smart Cities extended with Linked Data. Dyna, 87(214), 229.
https://doi.org/10.15446/dyna.v87n214.83226

[51] Vizcarrondo, J., Aguilar, J., Exposito, E., & Subias, A. (2017). MAPE-K as a service-oriented architecture. IEEE Latin
America Transactions, 15(6), 1163-1175. https://doi.org/10.1109/TLA.2017.7932705

[52] Aguilar, J., Cordero, J., & Buendía, O. (2018). Specification of the autonomic cycles of learning analytic tasks for a
smart classroom. Journal of Educational Computing Research, 56(6), 866-891. https://doi.org/10.1177/0735633117727698

[53] Aguilar, J., Cerrada, M., & Hidrobo, F. (2007). A methodology to specify multiagent systems. In Agent and Multi-
Agent Systems: Technologies and Applications: First KES International Symposium, KES-AMSTA 2007, Wroclaw, Poland,
May 31–June 1, 2007. Proceedings 1 (pp. 92-101). Springer Berlin Heidelberg. http://10.1007/978-3-540-72830-6_10

[54] Dos Santos, R., Puerto, E., & Aguilar, J. (2023, October). Automated Ontology Generator System Based on Linked
Data. In 2023 XLIX Latin American Computer Conference (CLEI) (pp. 1-10). IEEE.
https://doi.org/10.1109/CLEI60451.2023.10346110

[55] Dos Santos, R, Puerto, E. & Aguilar, J. (2022). Arquitectura para la Creación y Enriquecimiento Automático de
Ontologías a partir de Datos Enlazados. Mundo FESC, 12(24), 190-200. https://doi.org/10.61799/2216-0388.1213

 [56] Dos Santos, R. D., & Aguilar, J. (2023). A hybrid recommender system based on description/dialetheic logic and
linked data. Expert Systems, 40(2), e13143. https://doi.org/10.1111/exsy.13143

[57] Aguilar, J., Valdiviezo-Díaz, P., & Riofrio, G. (2017). A general framework for intelligent recommender systems.
Applied Computing and Informatics, 13(2), 147–160. https://doi.org/10.1016/j.aci.2016.08.002

http://10.1007/978-3-540-72830-6_10
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.4018/978-1-5225-7030-1.ch035
https://doi.org/10.15446/dyna.v87n214.83226
https://doi.org/10.1016/j.aci.2016.08.002
https://doi.org/10.1111/exsy.13143
https://doi.org/10.61799/2216-0388.1213
https://doi.org/10.1109/CLEI60451.2023.10346110
https://doi.org/10.1177/0735633117727698
https://doi.org/10.1007/s00607-020-00799-5
https://doi.org/10.1007/978-3-319-48024-4
https://doi.org/10.48550/arXiv.2001.00745
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.3390/computers12080151
https://doi.org/10.1109/CLEI56649.2022.9959918
https://doi.org/10.1109/TLA.2017.7932705

 [58] González-Eras, A., Dos Santos, R., & Aguilar, J. (2023). Evaluation of digital competence profiles using dialetheic
logic. International Journal of Artificial Intelligence in Education, 33(1), 59-87. https://doi.org/10.1007/s40593-021-00286-8

[59] González-Eras, A., Dos Santos, R., & Aguilar, J. (2020). Análisis de las contradicciones en las competencias
profesionales en los textos digitales usando lógica dialéctica. Revista Ibérica de Sistemas e Tecnologias de Informação,
(E27), 150-163.

[60] González-Eras, A., & Aguilar, J . (2018). Esquema para la actualización de Ontologías de Competencias en base al
Procesamiento del Lenguaje Natural y la Minería Semántica. Revista Ibérica de Sistemas e Tecnologias de Informação,
(E17), 433-447.

[61] González-Eras, A., & Aguilar, J. (2019) Determination of professional competencies using an alignment algorithm of
academic and professional profiles, based on competence thesauri and similarity measures, International Journal of
Artificial Intelligence in Education. https://doi.org/10.1007/s40593-019-00185-z

[62] Pacheco, F., Rangel, C., Aguilar, J., Cerrada, M., & Altamiranda, J. (2014, September). Methodological framework for
data processing based on the Data Science paradigm. In 2014 XL Latin american computing conference (CLEI). pp. 1-12.
IEEE. https://doi.org/10.1109/CLEI.2014.6965184

[63] Dos Santos, R., Aguilar. (2025). An Autonomous Meta-Learning Architecture for Transfer Learning based on Linked
Data.. EN REVISTA

[64] Jordon, J., Szpruch, L., Houssiau, F., Bottarelli, M., Cherubin, G., Maple, C., ... & Weller, A. (2022). Synthetic Data--
what, why and how?. arXiv preprint arXiv:2205.03257. https://doi.org/10.48550/arXiv.2210.07574

[65] Raghunathan, T. E. (2021). Synthetic data. Annual review of statistics and its application, 8(1), 129-140.
https://doi.org/10.1146/annurev-statistics-040720-031848

[66] Toscano-Miranda, R., Aguilar, J., Hoyos, W., Caro, M., Trebilcok, A., & Toro, M. (2024). Different transfer learning
approaches for insect pest classification in cotton. Applied Soft Computing, vol. 153, pp. 111283.
https://doi.org/10.1016/j.asoc.2024.111283

[67] Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z., & Azim, M. A. (2022). Transfer learning: a friendly introduction.
Journal of Big Data, 9(1), 102. https://doi.org/10.1186/s40537-022-00652-w

[68] Agarwal, N., Sondhi, A., Chopra, K., & Singh, G. (2021). Transfer learning: Survey and classification. Smart
Innovations in Communication and Computational Sciences: Proceedings of ICSICCS 2020, 145-155.
https://doi.org/10.1007/978-981-15-5345-5_13

[69] Dos Santos, R., Aguilar. (2025). An Explainable Feature Generation Approach for Classification Models Using CNNs.
EN REVISTA

[70] Zhang, T., Zhang, Z. A., Fan, Z., Luo, H., Liu, F., Liu, Q., ... & Jian, L. (2023, July). OpenFE: automated feature
generation with expert-level performance. In International Conference on Machine Learning (pp. 41880-41901). PMLR.
https://doi.org/10.48550/arXiv.2211.12507

[71] Sarhan, M., Layeghy, S., Moustafa, N., Gallagher, M., & Portmann, M. (2024). Feature extraction for machine
learning-based intrusion detection in IoT networks. Digital Communications and Networks, 10(1), 205-216.
https://doi.org/10.1016/j.dcan.2022.08.012

[72] Dhal, P., & Azad, C. (2022). A comprehensive survey on feature selection in the various fields of machine learning.
Applied Intelligence, 52(4), 4543-4581. https://doi.org/10.1007/s10489-021-02550-9

[73] Castillo-Cara, M., Talla-Chumpitaz, R., García-Castro, R., & Orozco-Barbosa, L. (2023). TINTO: Converting Tidy
Data into image for classification with 2-Dimensional Convolutional Neural Networks. SoftwareX, vol. 22, p. 101391.
https://doi.org/10.1016/j.softx.2023.101391

[74] Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. (2016). Grad-CAM: Gradient-weighted
Class Activation Mapping. Arxiv. https://doi.org/10.48550/arXiv.1610.02391

[75] Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., ... & Hu, X. (2020). Score-CAM: Score-weighted visual
explanations for convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, p. 24-25. https://doi.org/10.48550/arXiv.1910.01279

https://doi.org/10.48550/arXiv.1610.02391
https://doi.org/10.1007/s40593-019-00185-z
https://doi.org/10.1007/s40593-021-00286-8
https://doi.org/10.48550/arXiv.1910.01279
https://doi.org/10.1016/j.softx.2023.101391
https://doi.org/10.1007/s10489-021-02550-9
https://doi.org/10.1016/j.dcan.2022.08.012
https://doi.org/10.48550/arXiv.2211.12507
https://doi.org/10.1007/978-981-15-5345-5_13
https://doi.org/10.1186/s40537-022-00652-w
https://doi.org/10.1016/j.asoc.2024.111283
https://doi.org/10.48550/arXiv.2210.07574
https://doi.org/10.1109/CLEI.2014.6965184
https://doi.org/10.1146/annurev-statistics-040720-031848

[76] Jiang, P. T., Zhang, C. B., Hou, Q., Cheng, M. M., & Wei, Y. (2021). Layercam: Exploring hierarchical class activation
maps for localization. IEEE Transactions on Image Processing, vol. 30, p. 5875-5888.
https://doi.org/10.1109/TIP.2021.3089943

[77] Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., & Viegas, F. (2018, July). Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (tcav). In International conference on machine learning.
PMLR, p. 2668-2677. https://doi.org/10.48550/arXiv.1711.11279

[78] Fuentes, J., Dos Santos, R., Aguilar. Shi, Donghui. (2025). Meta-learning Architecture for ACODAT in the Context of
Agro-Industrial Production Chains of MSMEs.. EN REVISTA

https://doi.org/10.48550/arXiv.1711.11279
https://doi.org/10.1109/TIP.2021.3089943

8 Anexos

8.1 Anexo 2.A: Tecnologías de los Datos Enlazados

Las tecnologías existentes son de suma importancia para implementar los Datos Enlazados, entre los
elementos a considerar están los formatos de almacenamiento, los lenguajes de consulta y las
herramientas de publicación.

Los formatos de almacenamiento son muy variados, para tener una idea aproximada de la variedad de
formatos, si se carga la URI que representa a Venezuela en DBpedia
“http://dbpedia.org/page/Venezuela” en el navegador, en la parte superior se observa un menú que
permite seleccionar el formato en el que se desea obtener esta información. Entre los formatos de
intercambio que se muestran están los siguientes: RDF (N-Triples, N3/Turtle y XML), ODATA (Atom,
JSON), Microdata (JSON, HTML), Embebidos (JSON, Turtle), CXML, CSV y JSON-LD.

El formato más usado en los Datos Enlazados es N3/Turtle (usado en los ejemplos mostrados), por su
sencilla lectura y porque su serialización RDF es similar al lenguaje de consulta SPARQL. N-
Triples1112131415161718 es un subconjunto de Turtle19 y N320, fue diseñado para ser un formato más simple
y fácil de analizar e interpretar por los programas, sin embargo, carece de algunos de los accesos
directos proporcionados por RDF, haciéndolo tedioso para escribir a mano y leer grandes cantidades de
datos.. El formato RDF/XML21 es la primera notación usada y estandarizada por el W3C, basado en el
formato de intercambio XML, su ventaja inicial radica en el soporte a los lenguajes de programación
con el formato XML, pero presenta un grave problema para su lectura por los humanos, ya que su
codificación es bastante compleja. Otro formato que ha tenido gran aceptación en los Datos Enlazados
es el JSON-LD (Javascript Object Notation for Linked Data)22, porque está basado en el formato de
intercambio JSON, y uno de sus objetivos es ayudar y facilitar la transformación de datos en JSON a
JSON-LD, ya que existen muchos servicios web que proveen información en JSON.

11 https://www.w3.org/TR/microdata/
12 https://es.wikipedia.org/wiki/SQL
13 https://www.ics.forth.gr/isl/RDF/RQL/
14 https://www.w3.org/Submission/RDQL/
15 http://jena.apache.org/documentation/fuseki2/index.html
16 http://jena.apache.org
17 http://rdf4j.org
18 https://virtuoso.openlinksw.com
19 http://live.dbpedia.org
20 Formato CONLL, donde NC: sustantivo, SP; preposición y AQ: adjetivo.
21 Lógicas no aristotélicas: Que no cumple los principios de la lógica aristotélica de identidad, no contradicción y del

tercero excluido [69].
22

Las principales críticas hacia los formatos anteriormente comentados, radican en que gran cantidad de
información ya está disponible en las páginas HTML, y la duplicación en un formato diferente es tanto
una inversión inicial significativa como una molestia para su mantenimiento. Para solucionar estos
problemas, se considera integrar etiquetas semánticas o anotaciones semánticas en las webs existentes,
a través de pequeños cambios en la información y los hipervínculos, haciendo explícito el significado
de la información a las aplicaciones de Datos Enlazados o buscadores. Entre estos tipos de formatos
que proveen capacidades embebidas se cuenta con: Microformatos, RDFa y Microdatos.

Los Microformatos23 se constituyen en la primera iniciativa de agregar información extra al código
HTML, aprovechando que los intérpretes de este código ignoran cualquier etiqueta desconocida a sus
especificaciones. Es allí donde se utilizan los atributos y propiedades, para permitir identificar eventos,
información de contacto, relaciones sociales, direcciones, ubicaciones (coordenadas), etc. El RDFa 24 al
igual que los microformatos, funciona agregando atributos a las etiquetas; sin embargo, este permite
definir espacio de nombres de la misma manera que en RDF/XML. Gracias a esto, los escritores no
están restringidos a solo los vocabularios oficiales, por lo que pueden definir sus propios vocabularios.
Por último, los Microdatos25, o como los llama Google, Rich Snippets, son una especificación de
HTML5 que ayuda a las aplicaciones a entender el contenido que hay en una página. Esto se logra con
las propiedades añadidas a las etiquetas HTML5, que ofrecen diferentes esquemas según el tipo de
contenido del que se trate, y los buscadores lo usan para extraer información y facilitar la indexación de
los datos, ya que permiten contextualizar la información contenida en las páginas web.. A continuación
se presenta un ejemplo de Venezuela en Microformatos:

Venezuela

Los lenguajes de consultas son fundamentales en el proceso para encontrar la información que se
modeló, concentrándose en los datos de manera abstracta, ignorando el formato (N-Triples, N3,
RDF/XML, etc.) en que fueron almacenadas originalmente las tripletas. Los almacenes o repositorios
donde se guardan las tripletas, también se les denominan bases de datos semánticas. En las bases de
datos relacionales se usa un lenguaje de consulta, como el SQL26, para obtener información contenida
en dichas bases de datos. De igual manera, las bases de datos semánticas necesitan de un estándar que
permita encontrar los datos o tripletas. Existen muchos lenguajes de consulta RDF, como por ejemplo,
RQL27, RDQL28, SPARQL, entre otros, y en la gran mayoría se modelan las consultas de manera

23 http://purl.org/dc/terms/ https://www.w3.org/TR/n-triples/

24 https://www.w3.org/TR/turtle/
25 https://www.w3.org/TeamSubmission/n3/
26 https://www.w3.org/TR/rdf-syntax-grammar/
27 https://www.w3.org/TR/json-ld/
28 http://microformats.org/

semejante al SQL. El lenguaje de consulta usado en los Datos Enlazados es el SPARQL, ya que sus
consultas son muy sencillas y potentes, y permite a las organizaciones que se encargan de generar estos
datos, una forma fácil de compartir y acceder a los datos, ya sea en repositorios locales como remotos.
Un ejemplo de este tipo de consulta es mostrado a continuación:

PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX dbpedia-c: <http://es-la.dbpedia.org/resource/Categoría:>
SELECT ?Personas ?Resumen
WHERE {
 ?URIPersonas dcterms:subject dbpedia:Científicos_de_Venezuela .
 ?URIPersonas dbpedia-owl:abstract ?Resumen .
 ?URIPersonas rdfs:label ?Personas .
}

En la palabra SELECT se escriben las variables que se desean obtener, también se podría usar el
símbolo de asterisco (*) y se obtendrían todas las variables definidas en la tripleta que se está
consultando. Luego se usa la palabra WHERE, para indicar de dónde se recogerá la información. En
esta parte hay que pensar en tripletas. La palabra PREFIX es solo para abreviar las direcciones de cada
URI usada.

Las herramientas de publicación son las que permiten almacenar y compartir los Datos Enlazados.
Estas herramientas también se les denominan motores de consultas. Normalmente, estas herramientas
implementan SPARQL endpoint, que es un servicio web que permite realizar consultas, por medio del
protocolo SPARQL (capa que funciona sobre HTTP), en lenguaje SPARQL, sobre un grafo compuesto
por tripletas RDF [25]. Entre los motores más comunes se encuentran los siguientes: D2RQ, Apache
Jena Fuseki, RDF4J (Sesame), OpenLink Virtuoso, AllegroGraph, RDFStore, Ontotext GraphDB, entre
otros. A continuación se detallan algunos de estos motores [16]:

 Apache Jena Fuseki29: es un servidor SPARQL implementado en Java, que puede funcionar
como un servicio del sistema operativo, como una aplicación web (archivo WAR), o como un
servidor independiente. Forma parte del conjunto de herramientas ofrecidas por Apache Jena30
para el desarrollo de aplicaciones para Web Semántica y Datos Enlazados. Entre el conjunto de
herramientas ofrecidas por Apache Jena están: una API para extraer e insertar datos en los
grafos RDF, y un soporte para ontologías especificadas en OWL, con diversos razonadores
como Pellet, Racer y FaCT++.

 Eclipse RDF4J31: es el sucesor del anteriormente conocido proyecto OpenRDF Sesame, que es
un poderoso framework en Java para el procesamiento de datos RDF, que incluye la creación,
análisis, almacenamiento, inferencia y consulta sobre dichos Datos Enlazados. Ofrece una API
que permite conectar las distintas soluciones líderes en almacenamiento de RDF, y pone a
disposición los datos con SPARQL endpoint, para así lograr crear aplicaciones que aprovechen
el poder de los Datos Enlazados y web semántica.

29 https://www.w3.org/TR/rdfa-syntax/
30 https://www.w3.org/TR/microdata/
31 https://es.wikipedia.org/wiki/SQL

 OpenLink Virtuoso32: es una de las soluciones más completas y moderna para el acceso,
integración y gestión datos. La arquitectura de OpenLink Virtuoso es un híbrido de Servidor de
Aplicaciones Web y Sistema de Gestión de Datos, que permite la persistencia de diferentes tipos
datos: Base de Datos Relacionales (Oracle, SQL Server, MySql, PostgreSql, DB2, Sybase, CA-
Ingres, Informix, etc), RDF, XML, texto, documentos Web (con o sin microformatos
embebidos), Datos Enlazados, datos provenientes de Web Services o Web APIs, entre otros.
Todo lo anterior, lo logra gracias a su potente característica principal, el componente Sponger,
que permite transformar datos no RDF a RDF en tiempo de ejecución. Sponger usa unos
pequeños paquetes llamados cartridge, que indican como hacer el mapeo de grupos de datos no
RDF a RDF, e indican todas las configuraciones de seguridad y acceso a las fuentes de donde se
van a realizar las extracciones. En OpenLink Virtuoso ya vienen integrados una gran cantidad
de cartridges, pero también ofrece al usuario la posibilidad de construirlos para su formato de
datos específico.

32

8.2 Anexo 3.A: Middleware MiSCi para Ciudades Inteligentes
extendido con Datos Enlazados

8.3 Anexo 3.B: Automated Ontology Generator System based on
Linked data

8.4 Anexo 3.C: Arquitectura para la Creación y Enriquecimiento
Automático de Ontologías a partir de Datos Enlazado

8.5 Anexo 4.A: A hybrid recommender system based on
description/dialetheic logic and linked data

8.6 Anexo 4.B: Evaluation of digital competence profiles using
dialetheic logic

8.7 Anexo 4.C: Análisis de las contradicciones en las competencias
profesionales en los textos digitales usando Lógica Dialéctica

8.8 Anexo 5.A: A meta-learning architecture based on linked data.

8.9 Anexo 5.B: An Autonomous Meta-Learning Architecture for
Transfer Learning based on Linked Data

Dos Santos, R., Aguilar. (2025). An Autonomous Meta-Learning Architecture for Transfer Learning
based on Linked Data. EN REVISTA

8.10 Anexo 5.C: An Explainable Feature Generation Approach for
Classification Models Using CNNs

Dos Santos, R., Aguilar. (2025). An Explainable Feature Generation Approach for Classification
Models Using CNNs. EN REVISTA

8.11 Anexo 5.D: A synthetic Data Generator for Smart Grids based on
the Variational-Autoencoder Technique and Linked Data Paradigm

8.12 Anexo 5.E: A synthetic data generation system based on the
variational-autoencoder technique and the linked data paradigm

8.13 Anexo 5.F: Meta-learning Architecture for ACODAT in the Context
of Agro-Industrial Production Chains of MSMEs

Fuentes, J., Dos Santos, R., Aguilar. Shi, Donghui. (2025). Meta-learning Architecture for ACODAT in
the Context of Agro-Industrial Production Chains of MSMEs. EN REVISTA

	1 Introducción
	1.1 Planteamiento del Problema
	1.2 Objetivos
	1.2.1 Objetivo General
	1.2.2 Objetivos Específicos

	1.3 Antecedentes
	1.4 Organización de la Tesis

	2 Marco Teórico
	2.1 Datos Enlazados
	A.1.1 Principios de los Datos Enlazados
	A.1.2 Modelado de los Datos Enlazados

	2.2 Aprendizaje Automático
	2.2.1 Tipos de aprendizaje
	2.2.2 Técnicas avanzadas de redes neuronales

	2.3 Meta-Aprendizaje
	2.3.1 Meta-Dataset
	2.3.2 Meta-Características
	2.3.3 Meta-Técnicas
	2.3.4 Meta-Modelos

	2.4 Lógica Dialéctica

	3 Arquitecturas de Gestión de Conocimiento basado en Datos Enlazados
	3.1 Ampliación del MiSCi extendido con Datos Enlazados
	3.1.1 Especificación de los agentes de Datos Enlazados
	3.1.2 Experimentación

	3.2 Generación Automático de Ontologías basado en Datos Enlazados
	3.2.1 Componentes de la capa Knowledge Base Manager
	3.2.2 Componentes de la capa Knowledge Generator Manager
	3.2.3 Componentes de la capa Web Services Manager
	3.2.4 Comportamiento de AOGS
	3.2.5 Experimentación

	4 Recomendador Híbrido Basado en Lógica Descriptiva/Dialéctica y Datos Enlazados
	4.1 Arquitectura del HRS
	4.1.1 Componentes del Grupo Reasoning Engines
	4.1.2 Componentes del Grupo Manager

	4.2 Funcionamiento del HRS
	4.2.1 Identificación de URI utilizando Datos Enlazados
	4.2.2 Extracción de Conocimiento utilizando Datos Enlazados
	4.2.3 Verificación y Filtrado de Recomendaciones utilizando Datos Enlazados
	4.2.4 Extracción de Contenidos Relacionados a las Recomendaciones utilizando Datos Enlazados

	4.3 Experimentación
	4.3.1 Identificación de URIs mediante Datos Enlazados
	4.3.2 Extracción de conocimientos mediante Datos Enlazados
	4.3.3 Verificación y filtrado de recomendaciones mediante Datos Enlazados
	4.3.4 Extracción de contenidos relacionados con las recomendaciones mediante Datos Enlazados
	4.3.5 Análisis y Validación del Experimento

	4.4 Aplicaciones
	4.4.1 Fenómenos dialécticos en las competencias (Knowledge Model)
	4.4.2 Otros Modelos de Conocimiento
	4.4.3 Análisis General

	5 Arquitectura de Meta-Aprendizaje para Modelos de Aprendizaje Automático basado en Datos Enlazados
	5.1 Arquitectura
	5.1.1 Módulos de la arquitectura

	5.2 Ampliación de la Arquitectura
	5.2.1 Generación de Características
	5.2.2 Generación de Datos Artificiales

	5.3 Casos de Estudio
	5.3.1 Caso 1: Meta-Algoritmo Autónomo
	5.3.2 Caso 2: Generación de Características
	5.3.3 Caso 3: Generación de Datos Artificiales

	5.4 Entorno de Meta-Aprendizaje ACODAT
	5.4.1 Sistema Arquitectónico ACODAT
	5.4.2 Caso de estudio

	6 Conclusiones y Trabajos Futuros
	6.1 Conclusiones
	6.2 Trabajos Futuros

	7 Referencias Bibliográficas
	8 Anexos
	8.1 Anexo 2.A: Tecnologías de los Datos Enlazados
	8.2 Anexo 3.A: Middleware MiSCi para Ciudades Inteligentes extendido con Datos Enlazados
	8.3 Anexo 3.B: Automated Ontology Generator System based on Linked data
	8.4 Anexo 3.C: Arquitectura para la Creación y Enriquecimiento Automático de Ontologías a partir de Datos Enlazado
	8.5 Anexo 4.A: A hybrid recommender system based on description/dialetheic logic and linked data
	8.6 Anexo 4.B: Evaluation of digital competence profiles using dialetheic logic
	8.7 Anexo 4.C: Análisis de las contradicciones en las competencias profesionales en los textos digitales usando Lógica Dialéctica
	8.8 Anexo 5.A: A meta-learning architecture based on linked data.
	8.9 Anexo 5.B: An Autonomous Meta-Learning Architecture for Transfer Learning based on Linked Data
	8.10 Anexo 5.C: An Explainable Feature Generation Approach for Classification Models Using CNNs
	8.11 Anexo 5.D: A synthetic Data Generator for Smart Grids based on the Variational-Autoencoder Technique and Linked Data Paradigm
	8.12 Anexo 5.E: A synthetic data generation system based on the variational-autoencoder technique and the linked data paradigm
	8.13 Anexo 5.F: Meta-learning Architecture for ACODAT in the Context of Agro-Industrial Production Chains of MSMEs

