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Resumen

Este trabajo doctoral se adentra en la generación y explotación de conocimiento dentro de Ambientes 
Inteligentes, abordando la inherente falta de estructura semántica en la Web. Para ello, se propone un 
enfoque central basado en el  paradigma de Datos Enlazados, que permite interconectar y mejorar la 
comprensión  del  significado  de  los  datos  en  Internet,  tanto  para  humanos  como  para  máquinas, 
mediante el uso de estándares y enlaces entre recursos. La explotación inteligente de este conocimiento 
en  un  Ambiente  Inteligente  se  logra  integrando  mecanismos  avanzados como  el  Aprendizaje 
Automático para  construir  modelos  predictivos  o  de  clasificación,  incluyendo  técnicas  como  los 
Autocodificadores  Variacionales para  la  generación  de  datos  sintéticos  y  Redes  Neuronales 
Convolucionales para la extracción de características. Además, se incorpora el Meta-Aprendizaje para 
permitir que los sistemas de Aprendizaje Automático "aprendan a aprender" de experiencias previas,  
adaptando técnicas y gestionando metadatos como Meta-Dataset, Meta-Características, Meta-Técnicas 
y  Meta-Modelos.  Crucialmente,  la  Lógica  Dialéctica se  emplea  para  resolver  situaciones  de 
contradicción o ambigüedad, gestionando estados como la vaguedad, declaraciones contingentes sobre 
el  futuro,  fallos  de  presuposición,  discurso  ficticio  y  razonamiento  contrafáctico.  La  investigación 
presenta  arquitecturas  computacionales  innovadoras:  un  Sistema  de  Recomendación  Híbrido que 
combina lógica descriptiva y dialéctica con Datos Enlazados para gestionar información inconsistente y 
explotar la semántica web, una extensión del middleware MiSCi con una capa de Datos Enlazados para 
el enriquecimiento y la explotación semántica en tiempo real en ciudades inteligentes, y un Sistema de 
Generación Automática de Ontologías que crea y enriquece ontologías emergentes de forma autónoma 
utilizando Datos Enlazados.  Finalmente,  la arquitectura de Meta-Aprendizaje fue extendida para la 
creación automática de modelos de conocimiento apoyado en ciclos autónomos para tareas de análisis 
de datos, facilitando su adaptación rápida a nuevos escenarios en contextos como la automatización de 
cadenas de producción agroindustrial, mediante un ciclo autónomo que supervisa la ejecución de sus 
módulos a través de tareas de Observación, Análisis y Decisión.

Palabras Claves: Datos Enlazados,  Meta-Aprendizaje,  Lógica Dialéctica,  Aprendizaje Automático, 
Ambientes Inteligentes
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1 Introducción

1.1 Planteamiento del Problema

Los nuevos avances en las tecnologías de la información y la evolución de la World Wide Web, han  
transformado a la actual Web en un gran repositorio de documentos de distintos tipos, como imágenes, 
texto, entre otros. La Web presenta un gran problema en su uso como repositorio de información, por la 
falta de una estructura semántica que permita interpretar el contenido de la mayoría de la información 
contenida en la Web. En ese sentido, uno de los primeros esfuerzos que se ha hecho para explotar el 
gran contenido de información en ella, es su modelado usando ontologías, desarrollándose toda un área  
dedicada a estos temas conocida como la Web Semántica [1, 2]. Una extensión reciente de dicha área es 
el paradigma llamado Datos Enlazados o Vinculados (en inglés, Linked Data), el cual permite vincular 
un conjunto de datos publicados en la Internet (en este caso, conceptos o cosas) usando los mismos  
mecanismos de las páginas web, como las URL (en inglés Uniform Resource Locator) [3]. Los Datos 
Enlazados es sinónimo de datos semánticamente interconectados, lo que permite la interoperabilidad 
entre  ellos,  a  pesar  de  que  sean  heterogéneos  y  estén  distribuidos  eventualmente  en  diferentes 
repositorios. En [4] se refieren a los Datos Enlazados como “los datos publicados en la web, de manera 
tal que sea legible por las máquinas. Por otro lado, sus significados explícitamente están vinculadas a 
otros conjuntos de datos”.

En particular, nosotros estamos interesados en usar el paradigma de Datos Enlazados para manejar y 
explotar el conocimiento generado en un  Ambiente  Inteligente (AmI), sabiendo que un AmI es un 
“paradigma en el cual las personas están potenciadas o fortalecidas por el uso de entornos digitales que 
son conscientes  de  su  presencia  y  su  contexto,  que  son sensibles,  adaptativos,  y  responden a  sus 
necesidades, hábitos, gestos y emociones” [5, 6]. A su vez, en [7] lo definen como “los mecanismos que 
gobiernan los componentes de un entorno, siendo sensible a las demandas del usuario, aprendiendo o 
conociendo sus preferencias, para poder reaccionar de forma personalizada y consciente del contexto”. 
Sin embargo,  la  explotación inteligente del  conocimiento en un AmI,  implica extraer,  transformar,  
filtrar y relacionar datos e información desde diferentes fuentes. En ese sentido, poder usar el método 
de publicación e interconexión de datos como lo prevé el paradigma de Datos Enlazados, permite el 
enriquecimiento cognitivo de un AmI con diferentes fuentes de información. 

Ahora bien, los Datos Enlazados requieren de otros mecanismos para la generación de conocimiento 
desde diversas fuentes de datos e información. En específico, requieren de técnicas provenientes de las  
áreas  del  Meta-Aprendizaje,  Aprendizaje  Automático  y  Lógica  Dialéctica,  entre  otras,  para  que 
conjuntamente  se  genere  conocimiento  para  un  AmI  desde  sus  fuentes  de  información.  Para 
automatizar  las  tareas  de  extracción  y  explotación  de  conocimiento,  es  de  suma  importancia  las 
técnicas que provee el Aprendizaje Automático, potenciado con el  Meta-Aprendizaje. El  Aprendizaje 
Automático se dedica a desarrollar algoritmos y sistemas que permiten crear modelos de conocimiento 
(de predicción,  clasificación,  diagnóstico,  entre otros) a través de los datos o experiencias  [8],  los 



cuales luego puedan ser usados para responder a las distintas necesidades que tenga el AmI. El Meta-
Aprendizaje permite  aprender  a  aprender,  permitiendo  a  los  diferentes  procesos del  Aprendizaje 
Automático  a  adecuar  sus  técnicas  de  aprendizaje  basado  en  el  conocimiento  previo  y  en  los 
requerimientos de los problemas a resolver [9]. Por último, la Lógica Dialéctica posee la capacidad de 
resolver  situaciones  de  contradicción  o  ambigüedad,  así  mismo,  también  sirve  para  la  toma  de 
decisiones en contextos donde las  presuposiciones fallan (por  ejemplo,  en tareas  de diagnóstico o 
detección de fallas), con contingencias sobre el futuro (clave para el manejo de datos históricos, que 
indican que algo fue verdad y falso en el pasado), manejar situaciones contrafácticas que describen algo 
que podría haber ocurrido de la forma "Si A no hubiera ocurrido, C no habría ocurrido" (eso ayuda a los 
sistemas a aprender de los errores para hacer los correctivos en un futuro), o con un discurso ficticio 
(tomar decisiones bajo supuestos imaginarios) [10].

En particular, se hace necesario crear una Arquitectura Computacional que posea las capacidades de 
integrar los mecanismos para la generación de conocimiento con los Datos Enlazados, entendiendo a 
una Arquitectura Computacional como “la organización fundamental de un sistema definido por sus 
componentes, sus relaciones entre sí y con el medio ambiente, y los principios que guían su diseño y 
evolución” [11].  Así,  esta  tesis  se enfoca en definir  estrategias basadas en  Datos Enlazados,  en el 
contexto específico de los AmI, integrando mecanismos de Aprendizaje Automático, Meta-Aprendizaje 
y Lógica Dialéctica, para responder a las siguientes incógnitas: 

 ¿Cómo  se  puede  explotar  el  método  de  publicación  de  datos  estructurados  de  los  Datos 
Enlazados, para generar conocimiento útil en un AmI? 

 ¿Cómo se integran los conceptos/paradigmas de Aprendizaje Automático, Meta-Aprendizaje y 
Lógica  Dialéctica  con  Datos  Enlazados,  para  la  extracción  autonómica  y  explotación  del 
conocimiento en un AmI?

 ¿Cómo  las  herramientas  y  técnicas  existentes  alrededor  de  los  conceptos/paradigmas  de 
Aprendizaje  Automático  (por  ejemplo,  Tensorflow,  Scikit-Learn,  Keras),  Lógica  Dialéctica 
(por ejemplo, JGXYZ-RM3 con los razonadores Vampire y Eprover) y Datos Enlazados (por 
ejemplo, DBpedia, OpenLink Virtuoso), se pueden integrar para la gestión del conocimiento en 
un AmI?

 ¿Cómo se garantiza la interoperabilidad, la integración, la escalabilidad y la flexibilidad, de un 
entorno computacional de generación de conocimiento basado en  Datos Enlazados para un 
AmI?

1.2 Objetivos

1.2.1 Objetivo General

Definir una arquitectura computacional que permita la generación de conocimiento usando la técnica 
de Datos Enlazados para Ambientes Inteligentes



1.2.2 Objetivos Específicos

 Estudiar aspectos teóricos y prácticos, y en general, el estado de arte, relacionados con los  
Datos  Enlazados,  Inteligencia  Ambiental,  Lógica  Dialéctica,  Aprendizaje  Automático  y 
Meta-Aprendizaje.

 Caracterizar los mecanismos de extracción y procesamiento de información en un AmI, 
desde la perspectiva de los Datos Enlazados.

 Especificar  una  arquitectura  computacional  que  integre  los  diferentes  mecanismos  de 
Lógica  Dialéctica,  Aprendizaje  Automático  y  Meta-Aprendizaje,  requeridos  por  las 
estrategias basadas en Datos Enlazados, para la generación de conocimiento en un AmI.

 Desarrollar un conjunto de servicios de generación de conocimiento para un AmI usando la  
arquitectura computacional basada en  Datos Enlazados,  integrada con Lógica Dialéctica, 
Aprendizaje Automático y Meta-Aprendizaje.

 Elaborar un prototipo de la arquitectura computacional especificada,  y realizar casos de 
estudio en un AmI específico.

1.3 Antecedentes

La investigación y revisión de los antecedentes, se enfocaron en los siguientes ámbitos: el uso de los 
Datos Enlazados para la generación de conocimiento, el uso de los  Datos Enlazados en AmI, y la 
integración  de  los  Datos  Enlazados con  Lógica  Dialéctica,  Aprendizaje  Automático  y  Meta-
Aprendizaje. A continuación, presentamos los trabajos más resaltantes recientes en cada uno de esos 
ámbitos.

En relación  con el  uso  de  los  Datos  Enlazados para  la  generación de  conocimiento,  tenemos los 
siguientes trabajos. En la  revisión sistemática realizada en [12],  categorizan y analizan una amplia 
gama de herramientas basadas en Datos Enlazados,  específicamente,  en tareas de:  i.  Extracción de 
Conocimiento:  Transforman  texto  no  estructurado  o  semiestructurado  en  formatos  estructurados 
mediante el reconocimiento y la vinculación de entidades (Named Entity Recognition and Linking) y el 
enriquecimiento semántico; ii. Visualización y Exploración de Grafos de Conocimiento (Knowledge 
Graphs, KGs): Permite a los usuarios comprender las relaciones intrincadas a través de paradigmas de 
interacción como vistas tabulares (tripletes), nodo-enlace (grafos) y composición visual de consultas 
(consultas  SPARQL1);  iii. Reducción  de  Complejidad:  métodos  que  evitan  la  sobrecarga  de 
información, empleando estrategias como la visualización navegacional (centrada en un objeto y su 
entorno inmediato), la visualización incremental (permitiendo a los usuarios controlar un espacio de 
trabajo para añadir o eliminar vistas de objetos de datos dinámicamente), y la visualización resumida 

1 SPARQL (Query Language for RDF): https://www.w3.org/TR/sparql11-query/



(generando resúmenes de grafos para proporcionar una visión general concisa de un conjunto de datos 
grande).

Otro trabajo interesante es presentado Pham-Hang y otros [13], el cual describe el desarrollo de un 
novedoso sistema para compartir información sobre seguridad basado en Datos Enlazados. El sistema 
mejora el intercambio y la reutilización de datos pasados usando tres módulos principales. El Módulo  
de Ontología, que formaliza el conocimiento de los accidentes utilizando la metodología Linked Open 
Terms (LOT) y lenguajes como OWL2,  RDF3 y RDFS4 para estructurar la información de manera 
consistente. El Módulo de Procesamiento RDF, que se encarga de la conversión automática de datos 
existentes y nuevos a formato RDF, empleando librerías como RDFLib5 y KGLAB6 para manejar datos 
como grafos y tripletas (sujeto, predicado, objeto), que luego se almacenan en un RDF store (almacén 
de triples o almacén RDF,). Finalmente, el Módulo de Consulta permite la recuperación de información 
utilizando el protocolo SPARQL, el estándar para consultar Datos Enlazados abiertos y conjuntos de 
datos RDF (triplestores). Además, usand KGLAB para visualizaciones basadas en grafos que muestran 
las relaciones entre los elementos de los datos. De manera similar en [14], Thalahth y otros generan 
RDFs enriquecidos con información proveniente de Wikidata7.  Para ello, previamente concilian los 
conjuntos  de  datos  (por  ejemplo,  nombres  de  ciudades  y  países)  con  URIs  (Uniform  Resource 
Identifier) de Wikidata.

En cuanto al uso de los  Datos Enlazados en AmI, un primer trabajo es [15], donde se presenta una 
revisión sistemática de técnicas avanzadas de inteligencia vestible multimodal aplicadas al cuidado de  
la  demencia.  Este  enfoque  permite  un  monitoreo  no  intrusivo  del  contexto  mediante  el  uso  de 
dispositivos  como  lentes  inteligentes,  pulseras  inteligentes,  registradores  tipo  clip  y  teléfonos 
inteligentes. Una de las tecnologías claves es el empleo de repositorios de datos semánticos. Estos 
repositorios  permiten  la  búsqueda  y  el  procesamiento  de  Datos  Enlazados  en  el  contexto  de  vida 
saludables, para reusar los recursos disponibles en internet. La integración de los Datos Enlazados a  
través de repositorios semánticos y endpoints SPARQL (como CardioSHARE8 y Bio2RDF9) permite 
acceder  y  consultar  una  vasta  red  de  conocimiento  distribuido  y  heterogéneo.  Esta  capacidad  es  
fundamental para proporcionar servicios de salud personalizados e inteligentes a personas que viven 
con demencia.

En el trabajo [16] Favarato y otros presentan un estudio sobre el uso de los Datos Enlazados como 
mecanismos  de  gestión  de  los  datos  en  un  AmI,  permitiendo  combinar  una  vasta  cantidad  de 
información de diversas fuentes para obtener una comprensión integral de cómo la contaminación del 
aire y las condiciones de la vivienda contribuyen a las hospitalizaciones por infecciones del tracto 

2 OWL (Web Ontology Language): https://www.w3.org/OWL/
3 RDF (Resource Description Framework): https://www.w3.org/RDF/
4 RDFS (RDF Schema): https://www.w3.org/TR/rdf-schema/
5 RDFLib (RDF Library): https://rdflib.readthedocs.io/
6 KGLAB (Knowledge Graph Laboratory): https://derwen.ai/docs/kgl/
7 https://www.wikidata.org/
8 https://code.google.com/archive/p/cardioshare/
9 https://bio2rdf.org/



respiratorio en niños pequeños. Para ello, se unifican los datos aprovechando el paradigma de los Datos 
Enlazados, dónde se mapea los datos Registros del Censo Nacional (nombres, códigos postales y fechas 
de nacimiento) con los identificadores del Servicio Nacional de Salud (registros de salud). Además, se 
mapea los registros postales del Servicio de Datos Demográficos Personales con el código postal de los 
datos de Certificados de Rendimiento Energético y de exposición a la contaminación del aire. Por otro 
lado, en [17] describen un enfoque para la integración de sistemas heterogéneos mediante el uso de 
puntos de soporte semántico basado en Datos Enlazados. Estos puntos son microservicios ligeros que 
permiten la codificación de conocimiento sobre la marcha, transformando datos de sistemas existentes 
a un formato semántico (como RDF) y viceversa. La meta era crear una capa semántica no persistente 
para  facilitar  la  interoperabilidad,  consulta  y  razonamiento  para  sistemas  inteligentes,  como  los 
sistemas multiagente, incluso en entornos originalmente no semánticos.

Finalmente, en cuanto a la integración de los  Datos Enlazados con  Lógica Dialéctica, Aprendizaje 
Automático y Meta-Aprendizaje,  tenemos los  siguientes  trabajos.  En [18,  19,  20,  21]  se  detalla  el 
framework DL-Learner,  que implementa varios algoritmos de Aprendizaje Automático Supervisado 
para  construir  clasificadores,  usando archivos  en OWL y RDF como entrada.  El  objetivo de  DL-
Learner  es  proporcionar  un  framework  con  componentes  reutilizables  para  resolver  distintos 
problemas, usando una variedad de fuentes de conocimiento que juntas forman el conocimiento de base 
para una tarea dada. Dentro de ese conocimiento se pueden seleccionar casos positivos y negativos,  
para ser procesados por un algoritmo de Aprendizaje Automático para generar un clasificador. Por otro 
lado, se describe el problema de aprendizaje, y se especifica el algoritmo que se desea utilizar para  
resolverlo. 

Por otro lado, en el trabajo [22] se explora el Meta-Aprendizaje con el fin de mejorar la eficiencia y la 
eficacia  de  los  modelos  de  Aprendizaje  Automático  basados  en  el  conocimiento  y  la  experiencia 
previos. Ese trabajo propone una arquitectura de Meta-Aprendizaje compuesta por tres módulos. El 
primer módulo está representado por las Meta-Características, que ayudan a caracterizar los conjuntos 
de datos de acuerdo con el rendimiento de los algoritmos de Aprendizaje Automático en diferentes 
tareas. El segundo módulo está compuesto por el Meta-Aprendiz, que son algoritmos que aprenden de 
las Meta-Características y los datos sobre el rendimiento de tareas anteriores. Utilizan esta información 
para seleccionar o construir modelos de conocimiento adecuados y ajustar sus hiperparámetros para 
nuevas tareas.  Finalmente, los Meta-Dataset son colecciones de metadatos, es decir,  que son datos 
sobre los datos. Estos se construyen a partir de los metadatos resultantes de otras tareas de aprendizaje  
y proporcionan una rica fuente de información para alimentar al Meta-Aprendiz. De la misma manera,  
en [23] se aborda el desafío de construir modelos Aprendizaje Automático usando Meta-Aprendizaje 
para automatizar la selección de algoritmos y el ajuste de hiperparámetros. En este trabajo se recopila 
información tanto sobre las características de los conjuntos de datos (Meta-Características) como de los  
modelos generados (Meta-Modelos), y con esta información, el algoritmo Meta-Aprendizaje realiza 
recomendaciones de configuraciones para la generación de nuevos modelos.



Como se puede constatar, en la literatura reciente no hay trabajos previos que combinen los  Datos 
Enlazados con Lógica Dialéctica, ni que integren los Datos Enlazados con Aprendizaje Automático y 
Meta-Aprendizaje.  Los  trabajos  previos  tocan  aspectos  específicos  sobre  los  usos  de  los  Datos 
Enlazados con  Aprendizaje  Automático,  sin  la  integración  con Meta-Aprendizaje  o  con la  Lógica 
Dialéctica. Además, aunque las aplicaciones basadas en Datos Enlazados han demostrado un enorme 
potencial en el ámbito de las AmIs, la realidad es que su integración ha permanecido, en gran medida,  
en la fase de propuesta teórica más que en propuestas implementadas. En ese sentido, este trabajo busca 
proponer una arquitectura computacional que explote las ventajas de los Datos Enlazados para generar 
conocimiento  en  un  AmI,  que  permita  la  integración  de  los  mecanismos/herramientas  de  Lógica 
Dialéctica, Aprendizaje Automático y Meta-Aprendizaje, para enriquecer ese proceso.

1.4 Organización de la Tesis

Esta tesis se estructura en seis capítulos, cada uno profundizando en aspectos fundamentales para la 
generación  de  conocimiento  en  AmI  mediante  Datos  Enlazados,  y  la  integración  de  Aprendizaje 
Automático, Meta-Aprendizaje y Lógica Dialéctica. En el capítulo 1 se describe el planteamiento del 
problema y su importancia, los objetivos de la investigación y los antecedentes relacionados con los 
enfoques asociados a las áreas de los Datos Enlazados, Lógica Dialéctica, Aprendizaje Automático y 
Meta-Aprendizaje. En el capítulo 2 se detallan los aspectos teóricos relacionados con las distintas áreas  
cubiertas en la tesis. En el capítulo 3 se presentan las arquitecturas de gestión de conocimiento basadas 
en Datos Enlazados, específicamente, una ampliación del middleware MiSCi (Middleware for Smart 
Cities)  con  una  capa  de  Datos  Enlazados  y  una  arquitectura  para  la  generación  automática  y 
enriquecimiento  de  ontologías  emergentes,  ambas  fundamentadas  en la  metodología  MEDAWEDE 
(Metodología para el Desarrollo de Aplicaciones Web utilizando Datos Enlazados). En el capítulo 4 se  
presenta un Sistema de Recomendación Híbrido que integra lógica descriptiva/dialéctica con Datos  
Enlazados, detallando su arquitectura, funcionamiento y aplicaciones en contextos con información 
inconsistente o ambigua, como el diagnóstico médico y el análisis de competencias profesionales. En el 
capítulo  5  se  describe  una  arquitectura  de  Meta-Aprendizaje  para  la  generación  de  modelos  de 
Aprendizaje  Automático  basada  en  Datos  Enlazados,  incluyendo  una  ampliación  con  un  Meta-
Algoritmo Autónomo que incorpora aprendizaje por transferencia y generación de datos sintéticos, así 
como módulos para la generación de características y datos artificiales, ilustrado con diversos casos de 
estudio. Por último, en el capítulo 6 se presentan las conclusiones del trabajo y los trabajos futuros.



2 Marco Teórico

En  este  capítulo  se  presenta  una  revisión  general  de  los  aspectos  teóricos  más  importantes,  que 
coadyuven a definir estrategias basadas en los Datos Enlazados, en el contexto específico de los AmI, 
los cuales requieren la integración de  mecanismos de  Aprendizaje Automático, Meta-Aprendizaje y 
Lógica Dialéctica, para la generación de conocimiento en un  AmI. En ese sentido, todas esas áreas 
serán revisadas. 

2.1 Datos Enlazados

Los  Datos  Enlazados describen  una  forma  de  publicar  los  datos  en  Internet  para  que  se  puedan 
interconectar entre ellos [24]. Particularmente, los  Datos Enlazados es la manera que tiene la Web 
Semántica  de  enlazar  un  conjunto  de  datos  que  estén  publicados  en  la  Internet,  para  mejorar  la 
comprensión de sus significados, tanto para los humanos como para las máquinas [3,4].

A.1.1 Principios de los Datos Enlazados

Tim Berners-Lee introduce los principios de los Datos Enlazados, los cuales son [3,4,25]: i) Identidad: 
Utilizar URIs para identificar los recursos en Internet (por ejemplo, páginas web, objetos abstractos,  
servicios, ficheros, etc.); ii) Accesibilidad: Usar URIs HTTP (Hypertext Transfer Protocol) para que las 
personas puedan buscar recursos; iii)  Estructura: Utilizar estándares RDF para describir recursos, y 
SPARQL para realizar  consultas;  iv)  Navegación: Incluir  enlaces a  otras URIs para descubrir  más 
recursos.

El primer principio busca asignar un nombre único a las cosas o conceptos en la Internet, y para ello, 
usa el mecanismo de identificación única URIs para referirse a cualquier recurso. Un ejemplo que 
puede dilucidar  la  importancia  de las  URIs es  la  representación del  concepto “País”.  Si  se  quiere 
identificar al país “Venezuela” por su nombre, surge un gran dilema, ¿Qué nombre usar?, se podrían 
usar los siguientes nombres: Venezuela, República Bolivariana de Venezuela, VE, VEN, Bolivarian 
Republic of Venezuela, entre otros, es decir, se tendría problemas con los sinónimos, los sobrenombres 
y  los  idiomas.  La  solución  a  este  problema  consiste  en  usar  el  siguiente  URI: 
http://dbpedia.org/resource/Venezuela,  que  identifica  a  Venezuela  como  país,  sin  importar  idioma, 
diminutivo, etc.

El  segundo principio hace hincapié en el uso de URIs basado en el protocolo HTTP, para permitir 
recuperar desde la Web toda la descripción del recurso identificado por el URI. En el siguiente ejemplo  
se  muestra  el  interés  de  este  principio:  si  se  usa  como URI  el  código  ISO numérico  asignado  a 
Venezuela, que es  862, y se coloca en un navegador, no se obtiene una descripción del recurso. En 



cambio, si se usa una URI con un HTTP como http://dbpedia.org/resource/Venezuela, se mostraría una 
página con la información sobre el recurso.

El  tercer principio se basa en el formato y la calidad de la descripción de los recursos, para poder 
obtener información útil sobre dicho recurso. Para ello, dichas descripciones se deben materializar en 
forma de documentos Web. Los destinados a ser leídos por los seres humanos a menudo se representan 
como HTML, y los destinados al consumo de las máquinas se representan como datos RDF o XML ( en 
inglés,  eXtensible  Markup  Language).  Por  ejemplo,  si  se  solicita  la  descripción  de  la  URI 
http://dbpedia.org/resource/Venezuela  desde  un  navegador,  automáticamente  es  redireccionado  a  la 
versión  HTML ubicada  en  http://dbpedia.org/page/Venezuela.   Ahora,  si  se  solicita  la  misma URI 
indicando  a  través  de  una  aplicación,  automáticamente  es  redireccionado  a 
http://dbpedia.org/data/Venezuela.xml. Lo anterior, lo podemos comprobar con la aplicación CURL de 
la siguiente manera:

Por defecto:
curl -I http://dbpedia.org/resource/Venezuela
Indicando en la cabecera que es para una aplicación:
curl -I -H "Accept: application/rdf+xml" http://dbpedia.org/resource/Venezuela

El  cuarto  principio fomenta  la  interconexión  de  recursos  relacionados,  la  cual  es  necesaria  para 
conectar  los  datos  que  se  tienen  de  forma  que  no  queden  aislados.  Como  dichos  recursos  están 
publicados con URI con el protocolo HTTP, otras personas o aplicaciones pueden vincularlo a sus 
datos. Esta capacidad de seguir los vínculos permite a la gente navegar por la Web de datos, tal como  
pueden  navegar  por  la  Web  de  documentos.  Por  ejemplo,  si  se  detalla  el  recurso 
http://dbpedia.org/resource/Venezuela, se observa que tienen muchos enlaces a otros recursos, se puede 
mencionar algunos enlaces como: dbo:currency, dbo:anthem, dbp:languages, entre otros. Al seguir el 
recurso con su URI dbr:Spanish_language enlazado a  través  de dbp:languages,  se  muestra  toda la 
información sobre el idioma español, el cual a su vez tienen más enlaces, lo que indica que estamos en 
presencia de un grafo de recursos.

A.1.2 Modelado de los Datos Enlazados

Un punto muy importante en los Datos Enlazados es el modelado, porque especifica la manera de 
representar  el  conocimiento,  así  como  también,  los  lenguajes  y  los  vocabularios  u  ontologías 
necesarias para ese fin. En el caso de la representación del conocimiento para los Datos Enlazados, el 
esquema  actualmente  utilizado  se  fundamenta  en  las  redes  semánticas,  ya  que  es  una  forma  de 
representar el conocimiento por medio de conceptos y sus interrelaciones, bajo la forma de grafos [26, 
27].  Los  elementos  básicos  en  todos  los  esquemas  de  redes  son:  i) Los  nodos,  que  en  este  caso 
representan conceptos,  unidos  por  arcos  que representan las  relaciones  entre  los  conceptos.  ii)  Un 
conjunto de procedimientos de inferencia que operan sobre la red. 

La representación mental de estas redes son las  ontologías.  El concepto de ontología en el ámbito 
tecnológico más ampliamente aceptada es la propuesta por Gruber (2008), “La ontología define un 

http://dbpedia.org/page/Venezuela


conjunto de primitivas de representación con la que se puede modelar un dominio de conocimiento”  
[28], es decir, una ontología es un sistema de conceptos (o un vocabulario), usado como elemento  
básico (primitivo), para la construcción de sistemas basados en el conocimiento. En la ontología, una 
afirmación se representa como una tripleta que consta de tres elementos: un sujeto, un predicado y un  
objeto. El  sujeto y el  objeto representan a los dos conceptos o recursos a relacionar; el  predicado 
representa la naturaleza de esta relación, formulada de manera direccional (del sujeto al objeto). Por 
ejemplo, en la tripleta  Venezuela es_un País,  Venezuela es el sujeto,  País es el objeto y  es_un es el 
predicado. En las tripletas RDF (RDF-Triple), el predicado es denominado "propiedad" [29]. Un objeto 
puede ser también un literal o valor de texto, lo cual permite definir una propiedad para un recurso. 

En cuanto a los lenguajes de modelado, los actuales desarrollos en la representación del conocimiento 
están  siendo  influenciados  por  la  Web  Semántica,  y  han  incorporado  lenguajes  y  estándares  de 
representación del conocimiento basados en XML, e incluyen a RDF, RDFSchema, y OWL [30,31]. El 
XML permite la definición de gramáticas y etiquetas para la información contenida en los documentos, 
pero tiene un problema importante, y es que aporta una estructura, pero no una semántica [32,31]. Por  
otro lado, el lenguaje RDF es más expresivo para el procesamiento semántico, ya que a través de los 
recursos,  propiedades  y  sentencias  (combinación  de  recursos  y  propiedades),  permiten  una 
representación explícita de la semántica de los datos. La W3C considera al lenguaje RDF como el  
estándar  para  describir  recursos  (cualquier  concepto  que  tenga  una  URI)  en  la  web  [30].  A 
continuación, se muestra un ejemplo, en donde se observa la descomposición de la información descrita 
en una frase hasta obtener una representación de ese conocimiento en RDF.

Venezuela es un país que forma parte de América del Sur, y su idioma es el Español

La frase escrita anteriormente se puede descomponer en tres tripletas, donde el sujeto es Venezuela; los 
predicados son es_un, es_parte y tiene_idioma; y los objetos son País, América_del_Sur y Español, 
dando como resultado lo siguiente:

Venezuela es_un País
Venezuela es_parte América_del_Sur
Venezuela tiene_idioma Español

Sujeto y Propiedad se expresan con una URI, y el Objeto se expresa con URI si se relaciona a otro 
concepto, o como un Valor si define una propiedad de un recurso:

dbpedia:Venezuela rdf:type dbpedia-owl:Country .
dbpedia:Venezuela dcterms:subject dbpedia-c:Países_de_América_del_Sur .
dbpedia:Venezuela dbpedia-owl:spokenIn dbpedia:Idioma_español .

Ahora, el aporte de RDF a la sintaxis todavía es muy superficial para representar el conocimiento, ya 
que  solo  proporciona  mecanismos  para  expresar  declaraciones  simples  sobre  recursos,  utilizando 
propiedades y valores. En RDFSchema se agrega la noción de clases y propiedades, tal que se pueden 
crear  jerarquías  de clases  y propiedades.  También,  permite  especificar  el  dominio y rango de una 
propiedad, es decir, indica los tipos de sujetos y objetos de una propiedad en la tripleta. A continuación,  



se muestra un conjunto de tripletas usando las nuevas especificaciones del lenguaje RDFSchema, para 
enriquecer el conocimiento semántico de los recursos descrito en RDF:

dbpedia-owl:Country rdf:type owl:Class .
wikidata:Q1211934 rdf:subClassOf dbpedia-owl:Country .
wikidata:Q1211934 rdfs:label "Hispanos"@es .
dbpedia-owl:Language rdf:type owl:Class .
dbpedia-owl:spokenIn rdf:type rdf:Property .
dbpedia-owl:spokenIn rdfs:dominio dbpedia-owl:Country .
dbpedia-owl:spokenIn rdfs:range dbpedia-owl:Language .

En las tripletas mostradas se indica lo siguiente: con la propiedad type se define las clases Country y 
Q1211934 (Hispanos  según  la  propiedad  label).  También  se  indica  que  spokenIn es  un  tipo  de 
propiedad; con la propiedad subClassOf se indica que Q1211934 es una subclase de Country, es decir, 
se crea una jerarquía de clases; con  dominio se indica los sujetos de tipo  Country de la propiedad 
spokenIn; y con  range se indica los objetos de tipo  Lenguaje de la propiedad  spokenIn. Gracias a 
estas tripletas, se puede inferir nuevos conocimientos, como los siguientes:

wikidata:Q1211934 rdf:type owl:Class .
dbpedia:Idioma_español rdf:type dbpedia-owl:Language .
dbpedia:Venezuela rdf:type dbpedia-owl:Country .

A pesar  de  las  capacidades  que  ofrece  RDFSchema,  aún  hace  falta  una  variedad  más  amplia  de 
restricciones,  y  la  posibilidad  de  especificar  las  condiciones  necesarias  y  suficientes  para  la  
construcción de clases complejas a partir de otras definiciones de clases y propiedades. El lenguaje 
OWL extiende a RDF y RDFSchema, y ofrece un conjunto mucho más amplio de capacidades como, 
por ejemplo: características, restricciones y anotaciones de las propiedades; intersección, axiomas y 
combinaciones booleanas de clases; igualdad; cardinalidad; control de versiones, entre otros [29,30]. 
De esta gran variedad de capacidades, solo se mostrará el uso de disjointWith y equivalentClass en 
las siguientes tripletas.

dbpedia-owl:Country owl:disjointWith dbpedia-owl:Language .

La propiedad disjointWith permite indicar una restricción, donde se especifica que los individuos de 
tipo Country no pueden ser de tipo Language, es decir, que sí a un país se le asigna el tipo lenguaje 
esto producirá un error de inconsistencia en la ontología.

dbpedia:Idioma_español rdf:subClassOf dbpedia-owl:Language .
dbpedia:Idioma_español rdf:type dbpedia-owl:Idioma_español .
wikidata:Q1211934 owl:equivalentClass dbpedia-owl:spokenIn some
dbpedia:Idioma_español .

La propiedad equivalentClass permite especificar la equivalencia de una clase y una combinación de 
clase y propiedades específicas. Para este caso, se indica que la clase Q1211934 (Países hispanos) es 
equivalente a los países de habla (spokenIn) española (Idioma_español). Esto permite inferir que a los 
países que se le asigne el idioma español serán agrupados en la jerarquía de países hispanos.



Finalmente, en el proceso de presentar la evolución de los  lenguajes de modelado,  se ha usado un 
conjunto de vocabularios y ontologías, que son una parte fundamental para los Datos Enlazados, estos 
permiten  identificar  los  tipos  de  objetos  del  mundo  que  nos  rodea  como,  por  ejemplo:  personas, 
direcciones, entre otros. Además, nos permiten identificar las relaciones que existen entre esos objetos.  
A continuación, se muestran algunos de los más importantes: i. DBpedia Ontology10: se basa en OWL, 
y es la columna vertebral de DBpedia. Esta ha sido creada de forma manual basado en los infoboxes 
(hojas informativas para mostrar un resumen del tema de una página) utilizados en Wikipedia.  La 
ontología actualmente cubre 685 clases, y se describen con 2.795 propiedades diferentes. Entre las 
clases que se describen están: Persona, Parques, Deportes, Especies Ciudad, País, entre muchas más. La 
información en los artículos de Wikipedia se mapea a través de esta ontología. Por ejemplo, la URI 
http://dbpedia.org/ontology/country  (dbpedia-owl:Country) para  representar  al  concepto  País. 
Adicionalmente  a  esta  ontología,  DBpedia  cuenta  con  una  base  de  conocimientos  que  explota  el 
paradigma de Datos Enlazados en la Web, por medio de URIs a millones de conceptos. Por ejemplo, la 
URI  http://dbpedia.org/resource/Venezuela  (dbpedia:Venezuela) representa  el  concepto  Venezuela. 
Actualmente,  ya  varios  proveedores  de  datos  han  comenzado  a  establecer  vínculos  RDF  de  sus 
conjuntos de datos a DBpedia, haciendo DBpedia una de las herramientas más importantes en la web 
de datos. ii. Friend of a Friend (FOAF): es un proyecto que proporciona un vocabulario RDF para 
expresar metadatos que describen a personas, sus actividades, y sus relaciones con otras personas y 
objetos.  Por  ejemplo,  http://xmlns.com/foaf/0.1/name  (foaf:name)  representa  la  relación  de  un 
concepto con su etiqueta, quedando la tripleta así:  dbpedia:Venezuela  foaf:name "Venezuela"@es. 
iii. Dublin Core Metadata Initiative (DCMI): es una iniciativa para crear un vocabulario para describir 
recursos como: imágenes, páginas web, videos, libros, etc. Este vocabulario es capaz de proporcionar la 
información descriptiva básica sobre cualquier recurso, sin que importe el formato de origen, el área de 
especialización o el  origen cultural.  Por ejemplo,  http://purl.org/dc/terms/subject  (dcterms:subject) 
representa  la  relación  de  un  concepto  como  tema  de  otro  concepto:  dbpedia:Venezuela 
dcterms:subject dbpedia:Países_de_América_del_Sur.

Para  los  Datos  Enlazados  es  recomendable  utilizar  términos  de  vocabularios  y  ontologías  bien 
conocidos, en lugar de crear equivalentes, y solo se deben definir nuevas ontologías o vocabularios 
cuando los actuales no ofrezcan los requerimientos deseados.  Existen páginas dedicadas a  indexar 
vocabularios y ontologías para facilitar su búsqueda, ejemplo de estas páginas son http://lov.okfn.org y 
http://stats.lod2.eu/vocabularies.

El aprovechamiento óptimo de los Datos Enlazados se logra mediante la integración de tecnologías 
clave que permiten un flujo de datos eficiente y significativo. Estas tecnologías incluyen Formatos de 
Almacenamiento que  estructuran  los  datos,  Lenguajes  de  Consulta que  permiten  la  extracción  de 
información precisa y  Herramientas de Publicación que facilitan el acceso y la reutilización de los 
datos. Para obtener detalles adicionales sobre estas tecnologías, refiérase al Anexo 2.A.

10 http://dbpedia.org/ontology/



2.2 Aprendizaje Automático

El Aprendizaje Automático o Machine Learning en inglés, define a los algoritmos que buscan extraer 
conocimiento  desde  las  características  resaltante  de  un  problema,  permitiendo  la  construcción  de 
modelos de conocimientos [8]. Las características o variables, los modelos de conocimiento a definir, y 
las técnicas de aprendizaje automático, son los ingredientes principales en el Aprendizaje Automático 
(ver  Fig. 2.1).  Las  características  representan  los  atributos/variables  observables  del  problema,  el 
modelo es el conocimiento generado con la técnica de Aprendizaje Automático (descriptivo, predictivo, 
de optimización, etc.), y las técnicas son los mecanismos o estrategias de aprendizaje que se utilizan 
para generar los modelos de conocimiento.

2.2.1 Tipos de aprendizaje

El  Aprendizaje  Automático  se  divide  en  varios  tipos  de  aprendizaje:  supervisado,  no  supervisado, 
reforzado, entre otros. Particularmente, según la naturaleza del etiquetado de datos se definen dos tipo 
de aprendizaje  (ver  Fig. 2.2):  supervisado y no supervisado [8, 33].  El  aprendizaje  supervisado se 
utiliza para estimar un mapeo desconocido de entrada y salida,  a  partir  de muestras conocidas de 
entrada y salida, donde la salida está etiquetada. Este se divide en dos categorías de algoritmos, de  
regresión/predicción (el tipo de campo objetivo es numérico o continuo) y clasificación (el tipo de 
campo objetivo  es  categórico  o  discreto).  El  aprendizaje  no  supervisado se  utiliza  para  encontrar 
relaciones de similitud, diferencia o asociación en los datos de entrada, y solo se dan muestras de 
entrada al sistema de aprendizaje. Este se divide en agrupamiento (datos que son similares entre sí.), 
anomalía (datos que se diferencian de las  demás) y asociación (datos que se relacionan con otros  
datos).

Figura 2.1: Aprendizajes Automáticos y sus elementos



Por último, cada una de las técnicas y/o algoritmos de Aprendizaje Automático establece sus propias 
estrategias/mecanismos de aprendizaje para concebir sus modelos de conocimiento. Algunas de las 
técnicas o algoritmos más populares son los siguientes [34]: 

 Árbol de Decisiones: Usa un árbol de decisión para modelar la relación entre las características 
del modelo y los potenciales resultados, cada árbol está formado por nodos, arcos y ramas. Cada 
nodo representa los atributos de un grupo de datos que se va a clasificar, y cada arco representa 
un valor que el nodo puede tomar [34]. Al moverse por las ramas del árbol se puede ver la 
relación entre los valores de los atributos para el conjunto de datos bajo estudio.

 K-medias: Su objetivo es partir un conjunto de n valores en k grupos distintos, en el que cada 
observación pertenece al grupo cuyo valor medio es más cercano. Todas las observaciones que 
poseen características similares se colocan en el mismo grupo, y la media de los valores en un  
grupo particular es el centro de ese grupo [34].

 Redes Neuronales: es un algoritmo que imita el funcionamiento del cerebro, y en particular de 
las neuronas, de sus interconexiones, y de cómo ciertos estímulos de entradas producen ciertas 
salidas o resultados. Una red neuronal multicapas funciona en tres grupos de capas [34]. La 
capa de entrada recibe la información. Las capas ocultas procesan la entrada. Por último, la capa 
de salida envía la respuesta calculada. En general,  una neurona artificial suma sus entradas 
(como las dendritas), a partir de allí establece su estado de activación (como el soma), y envía 
su salida a sus neuronas vecinas (como el axón).

2.2.2 Técnicas avanzadas de redes neuronales

Figura 2.2: Los algoritmos de Aprendizajes Automáticos basados en datos



En el mundo de las técnicas avanzadas de redes neuronales,  nuestros trabajos se centraron en dos 
arquitecturas de aprendizaje profundo que han revolucionado la generación de datos sintéticos y el  
campo de la visión por computadora: Autoencoders Variacionales (VAE, Variational AutoEncoders) y 
Redes  Neuronales  Convolucionales  (CNN,  Convolutional  Neural  Network).  Específicamente, 
utilizamos  VAE  para  la  generación  de  datos  sintéticos,  aprovechando  su  capacidad  para  la 
reconstrucción de información, y CNN para la extracción automática de características relevantes.

 VAE: están diseñadas para aprender una representación latente comprimida de los datos de 
entrada. Los VAE introducen un elemento de probabilidad en su arquitectura, lo que les permite 
generar  nuevos  datos  similares  a  los  de  entrenamiento,  por  lo  tanto,  son  ideales  para  la 
reconstrucción de información faltante en imágenes y para la generación de datos sintéticos [35, 
36].  Estas  redes  están  compuestas  por  tres  partes  [37,  38]  (ver  Figura  2.3):  El  Encoder, 
representado en color verde, es la parte inicial del modelo que comprime los datos de entrada en 
un espacio latente de menor dimensión. El Espacio Latente, representado en color rojo, es la 
parte central del modelo y es una representación comprimida de los datos de entrada, donde 
cada punto representa una distribución de probabilidad. El Decoder, representado en color azul, 
es la parte final del modelo que reconstruye los datos originales a partir de la representación 
latente.

 CNN: están diseñadas para  trabajar  con datos  de imágenes,  y  su arquitectura  aprovecha la 
propiedad  de  la  localidad  de  las  imágenes  (es  decir,  que  los  píxeles  cercanos  están  más 
relacionados entre  sí).  Las  CNN  tienen  la  capacidad  de  aprender  automáticamente  las 
características más relevantes de las imágenes y de reconocer objetos independientemente de su 
posición y orientación en la imagen, por lo tanto, son ideales para extracción automática de 
características y para las tareas de clasificación y detección. Estas redes están compuestas por 
diferentes tipos de capas [39] (ver Figura 2.4): Las capas convolucionales, representadas en 
color amarillo, realizan la mayor parte de los cálculos, y es donde se extraen las características 

Figura 2.3: Arquitectura básica de un VAE 



esenciales de los datos de entrada. Esto se logra mediante la aplicación de múltiples filtros, 
también conocidos como kernels, que actúan como detectores de características. Cada filtro se  
desliza  sobre  la  entrada,  realizando  operaciones  de  convolución  para  identificar  patrones 
específicos  y  generar  mapas  de  características  que  resaltan  la  presencia  de  dichas 
características. Las capas de pooling, representadas en color azul, reducen la dimensionalidad 
de las características extraídas y hacen que la representación sea más invariante a pequeñas 
traslaciones.  La capa totalmente  conectada,  representada en color  verde,  realiza  la  tarea de 
clasificación a partir  de las características obtenidas en las capas anteriores,  generando una 
salida final.

2.3 Meta-Aprendizaje

El  Meta-Aprendizaje  (en  inglés  Meta-Learning) permite  a  Aprendizaje  Automático aprender  a 
aprender, mediante tareas que adaptan a las técnicas de Aprendizaje Automático a nuevos entornos [40, 
41, 9], es decir, aprende de las experiencias previas de forma sistemática y basada en datos. En general, 
el Meta-Aprendizaje adapta sus respuestas en función de las características inherentes a las tareas de 
Aprendizaje Automático que ha resuelto previamente [9, 42]. En específico, se necesita, por un lado, 
recopilar metadatos que describan las tareas de aprendizaje y los modelos aprendidos previamente. Esto 
comprende las configuraciones exactas del algoritmo utilizado para entrenar los modelos, incluidos los 
ajustes de hiperparámetros, las técnicas de aprendizaje, las evaluaciones del modelo resultante, entre 
otros. Para ello, se apoya en el conocimiento de las fuentes de dato (Meta-Dataset), conocimiento de las 
características de los datos (Meta-Características), conocimiento de las técnicas de aprendizaje (Meta-
Técnicas) y conocimiento de los modelos de conocimiento (Meta-Modelos).

Figura 2.4: Arquitectura básica de una CNN



2.3.1 Meta-Dataset

Los Meta-Dataset  consisten en información que caracteriza  a  los  conjuntos  de  datos,  describen el 
contenido, calidad, condiciones, historia, disponibilidad y otras características [9, 42]. Esta descripción 
facilita la localización, selección, recuperación y utilización de los conjuntos de datos [9]. 

2.3.2 Meta-Características

Las  Meta-Características  (Meta-Feature)  son  atributos  que  describen  características  de  los  datos,  
ofreciendo  información  sobre  cómo  se  construyó  los  datos,  su  calidad,  su  complejidad  y  otras 
propiedades  generales.  Normalmente  estos  Meta-Feature  se  obtienen  a  partir  de  características 
individuales,  combinaciones  de  características  o  información  específica  del  dominio  [9,  42].  A 
continuación se presentan diferentes tipos de características:

 Estadísticas  descriptivas:  Media,  mediana,  desviación  estándar,  mínimo,  máximo,  rango, 
cuartiles, etc.

 Medidas  de  complejidad:  Número  de  instancias,  número  de  atributos,  número  de  clases, 
proporción de valores faltantes, etc.

 Medidas de balance de clases: Proporción de instancias en cada clase.
 Medidas de correlación: Correlación de Pearson, coeficiente de Spearman, etc.
 Medidas de redundancia: Número de atributos redundantes.
 Medidas de ruido: Nivel de ruido en los datos, número de valores extremos, entre otros.
 Dominios específicos: Polaridad o emoción, intensidad narrativa, similitud entre los productos o 

usuarios, engagement, género musical, entre muchos más.

2.3.3 Meta-Técnicas

Las Meta-Técnicas (Meta-Technique) es información sobre las estrategias, parámetros y algoritmos que 
buscan optimizar y mejorar el proceso de aprendizaje de los modelos de Aprendizaje Automático [42]. 
Gestiona información como:

 Tipo de técnica: Cómo construir el modelo adecuado (clasificación, regresión, clustering, entre 
otros).

 Selección  de  hiperparámetros:  Cómo elegir  los  mejores  valores  para  los  parámetros  de  un 
modelo (tasa de aprendizaje, número de capas, etc.).

 Diseño de arquitecturas: Cómo construir modelos más eficientes y efectivos.
 Optimización de algoritmos: Cómo acelerar el entrenamiento y mejorar la convergencia de los 

modelos.



 Evaluación de modelos: Cómo medir la calidad y generalización de los modelos (métricas).

2.3.4 Meta-Modelos

Los  Meta-Modelos  (Meta-Model)  son,  en  esencia,  repositorios  de  conocimiento  que  almacenan 
información detallada sobre experimentos de Aprendizaje Automático realizados previamente [9, 42]. 
Esta información no solo incluye las métricas de rendimiento y los valores de los hiperparámetros, sino  
que  también  captura  las  características  intrínsecas  de  los  datos,  las  técnicas  de  preprocesamiento 
empleadas, la arquitectura de los modelos y las condiciones experimentales en general. Es decir, refleja 
las relaciones complejas entre las Meta-Características de una tarea y las configuraciones específicas de 
la técnica usada (Meta-Técnicas) para la construcción de un modelo [9]. En general, los Meta-Modelos 
actúan  como  una  especie  de  "memoria  colectiva"  para  el  Aprendizaje  Automático,  permitiendo 
aprender  de  los  errores  y  éxitos  del  pasado  para  construir  modelos  más  eficientes  y  efectivos.  A 
continuación se presenta la utilidad de los Meta-Modelos [9, 42]:

 Transferencia  de  conocimiento:  Permiten  reutilizar  el  conocimiento  adquirido  en  tareas 
anteriores para acelerar el desarrollo de nuevos modelos y mejorar su rendimiento.

 Selección de modelos: Ayudan a seleccionar el modelo más adecuado para una nueva tarea,  
basándose en las características de los datos y los objetivos del proyecto.

 Optimización  de  hiperparámetros:  Facilitan  la  búsqueda  de  los  mejores  valores  de  los 
hiperparámetros, evitando la exploración exhaustiva del espacio de búsqueda.

 Análisis de sensibilidad: Permiten evaluar la influencia de diferentes factores en el rendimiento 
de los modelos, como el tamaño del conjunto de datos o la elección de un algoritmo específico.

 Descubrimiento de patrones: Pueden revelar patrones y relaciones entre las características de los 
datos, las técnicas de aprendizaje y el rendimiento de los modelos, lo que puede conducir a 
nuevos conocimientos y avances en el campo del Aprendizaje Automático.

2.4 Lógica Dialéctica

La palabra  Dialéctica tiene muchas definiciones,  la más concisa indica que es una teoría y técnica 
retórica de dialogar y discutir  para descubrir  la verdad mediante la exposición y confrontación de  
razonamientos y argumentaciones contrarias entre sí. En otras palabras, siempre debe incluir de algún 
modo  la  contradicción [43].  En  la  Lógica  Dialéctica,  los  axiomas  dialécticos  permiten  que  las 
contradicciones y ambivalencias sean válidas dentro de un modelo formal [44].  En este sentido, la 
Lógica Dialéctica y la lógica formal parecen seguir caminos opuestos, y en efecto, la Lógica Dialéctica 
sería  el  reino  de  la  contradicción,  mientras  que  la  lógica  formal  sería  el  reino  de  la  no-
contradicción [43]. 



Ahora bien, en la lógica del razonamiento humano existen instancias o estados que son afectados por  
las contradicciones, es decir,  que reducir la lógica a una lógica sin contradicción sería tanto como 
querer ocultar la realidad [43, 45]. La Lógica Dialéctica posee la capacidad de resolver situaciones en 
las  que  un  razonamiento  se  encuentra  con  información  inconsistente,  ya  que  tiene  a  la  mano 
información tanto para creer una cosa como para, al mismo tiempo, creer lo contrario. Es decir, está en 
un estado de contradicción o ambigüedad. Los posibles estados que gestiona la Lógica Dialéctica son 
los siguientes [10]:

 Declaraciones contingentes sobre el futuro: indica que algo fue verdadero y falso en el pasado, 
por lo que no se puede prever su futuro. Ej. “Mañana habrá una guerra” puede ser cierto o 
falso, ya que han ocurrido ambos casos en el pasado.

 Falla de una presuposición: suponer algo que no es realmente cierto. Ej. “Es un niño”, si en la 
presuposición se asume un posible valor, se puede pensar que es un niño, y allí está la falla, 
porque también podría ser una niña

 Vaguedad: falta de claridad, precisión o exactitud en los fenómenos del lenguaje natural. Ej. En 
la oración “Él es calvo”, no se puede negar que una persona con cero cabellos sea calva, como 
tampoco se puede negar que una persona con 1000 cabellos sea calva.

 Discurso ficticio: tomar decisiones según ciertos supuestos imaginarios (lógicas imaginarias no 
aristotélicas).  Ej.  “Las vacas están volando”,  se  puede decir  que es falso porque nuestras 
creencias nos indica que las vacas no vuelan, pero podría ocurrir que las vacas están siendo 
transportadas en un avión, y la respuesta sería verdadera. Otro contexto donde sería verdadero 
es si se está hablando de un juego donde las leyes o creencias son distintas (mundo imaginario). 

 Razonamiento contrafáctico: pensar lo que pudo ser  y no fue.  Ej.   “Si no hubiese salido, 
hubiera aprobado y ahora no tendría que estudiar para el recuperativo”. Representa algo 
que no sucedió, pero que podría haber ocurrido. Allí subyace la incertidumbre, en eso que pudo 
haber ocurrido. 

Finalmente, en la Universidad de Miami en EEUU se desarrolló un razonador dialéctico para el sistema 
TPTP, denominado JGRM3, basado en la Lógica Dialéctica RM3 [4]. Esta lógica pertenece a la rama 
de  las  Lógicas  Paraconsistente,  o  sea,  permite  que  las  inconsistencias  y  las  contradicciones  sean 
válidas.  Sin  embargo,  la  Lógica  Dialéctica  se  distingue  de  otras  lógicas  paraconsistentes  por  su 
aceptación  del  Modus  Ponendo  Ponens  en  su  forma  clásica,  lo  que  facilita  la  derivación  de 
conclusiones a partir de implicaciones y antecedentes afirmados. Entendiéndose que el Modus Ponendo 
Ponens (modo que afirma afirmando), también llamado  Modus Ponens (modo afirmativo), establece 
que si un término implica a otro, y el término es verdadero; entonces se puede inferir que el otro 
término  es  verdadero.  Por  ejemplo,  “Si  está  lloviendo,  te  espero  dentro  del  teatro”,  y  “está 
lloviendo”, por lo tanto, “te espero dentro del teatro.



3 Arquitecturas de Gestión de Conocimiento basado en Datos 
Enlazados

En este capítulo se presentan dos arquitecturas para la gestión de conocimiento basado en los Datos 
Enlazados, estás ideas surgen de la revisión de la literatura sobre los Datos Enlazados en [46]. Además, 
ambas  arquitecturas  son  especificadas  según  MEDAWEDE  [24].La  estructura  del  capítulo  es  la 
siguiente: La sección 3.1 se basa en la sección 3 del artículo presentado en el Anexo 3.A, y presenta 
una ampliación de las capacidades del middleware MiSCi [47, 48, 49],  al  agregar una nueva capa 
denominada Datos Enlazados, para identificar, describir, conectar, relacionar y explotar los distintos 
datos generados por los sensores, usuarios y las aplicaciones de la ciudad inteligente. La sección 3.1.2 
ilustra un caso de estudio del MiSCi, basándose en la sección 4 del artículo presentado en el Anexo  
3.A. La sección 3.2 se basa en la Sección 3 del artículo presentado en el Anexo 3.B y la Sección  
“Materiales  y  métodos”  del  artículo  presentado en el  Anexo 3.C,  y  describe  una arquitectura  que 
permite  crear  y  enriquecer  ontologías  emergentes  de  forma  autónoma,  usando  como  insumo  el 
paradigma de Datos Enlazados. Finalmente, la sección 3.2.4 presenta un caso de estudio del generador 
ontológico, basándose en la sección 4 del artículo presentado en el Anexo 3.B. 

3.1 Ampliación del MiSCi extendido con Datos Enlazados

Esta sección ofrece un resumen extenso del trabajo presentado en [50], y los detalles se encuentran en 
la sección 3 del Anexo 3.A. En esta investigación se amplía el trabajo propuesto en [47, 48, 49], al 
agregar una nueva capa denominada Datos Enlazados (Linked Data Layer – LDL), que aumenta las 
capacidades  del  middleware  MiSCi  (ver  Figura  3.1).  Los  Datos  Enlazados  responden  a  varias 
necesidades en las ciudades inteligentes: la primera es para interpretar grandes cantidades de datos que  
provienen de distintas fuentes como: sensores, efectores, entre otros, donde muchos de estos datos son 
manejados  en  tiempo  real.  La  segunda  es  para  enriquecer  los  datos  con  información  semántica, 
proveniente de MiSCi o de fuentes externas.



En particular, explicaremos la capa desarrollada en ese trabajo, la capa LDL. Los distintos agentes de la 
capa  LDL  automatizan  las  etapas  de  la  metodología  MEDAWEDE,  en  el  middleware  MiSCi. 
MEDAWEDE es una metodología que permite desarrollar servicios basados en el paradigma de Datos 
Enlazados, y está compuesta por seis etapas divididas en dos grandes tareas. La primera tarea tiene la 
finalidad del enriquecimiento de los datos y su transformación a Datos Enlazados, y está integrada por  
las  siguientes  etapas  [24]:  i)  Especificación: en  esta  fase  se  seleccionan  las  fuentes  de  datos;  ii) 
Modelado: se centra en la creación del modelo que describe el conocimiento del área de estudio, para  
ello  se  utilizan  vocabularios  estándares,  se  reutilizan  ontologías,  e  incluso,  se  diseñan  ontologías 
propias, iii) Generación: se centra en la transformación de los datos al lenguaje RDF; iv) Vinculación: 
en esta fase se vinculan los datos con otros conjuntos de datos para aumentar su valor, visibilidad y 
calidad, v) Publicación: se pone a disposición los datos en repositorios de tripletas. La segunda tarea 
tiene  como  objetivo  la  explotación  de  los  Datos  Enlazados,  y  la  integra  la  siguiente  etapa:  vi) 
Explotación: esta etapa permite el manejo e integración de distintas interfaces o aplicaciones, para 
consumir los recursos publicados de manera agradable y sencilla.

En la capa LDL se llevan a cabo dos procesos importantes, según MEDAWEDE: i) Enriquecimiento:  
Este proceso realiza las etapas de especificación, modelado y generación de los datos de MiSCi, por  
parte  de  los  agentes  ILDA (Internal  Linked  Data  Agent)  y  ELDA (External  Linked  Data  Agent).  
Además, se realizan las tareas de vinculación y publicación de los datos de MiSCi por parte del agente 
LDIA (Linked Data Integration Agent); ii) Explotación: Este proceso realiza la etapa de explotación de  
los datos de MiSCi, la cual es realizada por el agente LDKA (Linked Data Knowledge Agent). Ahora  
bien,  estos  agentes  pueden  ser  activados  simultáneamente  desde  distintos  procesos,  según  las 
circunstancias que lo ameriten.

El proceso de enriquecimiento semántico implica recolectar datos internos y externos al MiSCi (ver 
Figura 3.2). La recolección de datos internos se activa cada vez que algún agente CzA, AppA o DA es  
actualizado,  para  lo  cual  se  invoca  al  agente  ILDA con  los  datos  nuevos  que  pueden  provenir 
simultáneamente  de  diferentes  fuentes  (ver  paso  1  en  Figura  3.2).  Estos  datos  son  preparados  y 
enriquecidos simultáneamente con información del Servicio Web de Contexto (Context Web Services - 
Cx WS) y del Servicio Web de Meta Ontología (Meta Ontology Web Services – MO WS) (ver paso 2 y 

Figura 3.1: Extensión del middleware MiSCi con Datos Enlazados



3 en Figura 3.2).  De la misma manera ocurre con la recolección de los datos externos, lo cual es  
realizado por el agente ELDA. Luego, el agente LDIA es activado con la información enriquecida 
generada por los agentes ILDA o ELDA, para vincular los datos previamente obtenidos con otros Datos 
Enlazados (ver paso 4 en Figura 3.2), para finalmente publicarlos como Datos Enlazados (ver paso 5 en 
Figura 3.2).

El proceso de explotación es activado por un agente del MiSCi cuando solicita información enlazada 
(ver Figura 3.3). Para este tipo de consulta se debe invocar al agente LDKA de MiSCi (ver paso 1 en  
Figura 3.3). Luego, el agente LDKA por medio de los distintos mecanismos inteligentes de explotación 
de conocimiento enlazado, explora simultáneamente todas las fuentes de Datos Enlazados, y retorna la 
información solicitada por el agente (ver paso 2 en Figura 3.3).

Los  agentes  de  la  capa  LDL definen  cuatro  ciclos  autonómicos  para  la  autogestión  de  los  Datos 
Enlazados en MiSCi, basado en el concepto de ciclos autonómicos como servicios propuestos en [51, 
52]. Cada ciclo autonómico establece la relación entre las tareas de los agentes, para la explotación de  
cada  una  de  las  formas  de  conocimiento  que  permite  el  agente  LDKA.  Algunas  de  esas  tareas 
establecen las reglas a activar del sistema recomendador según el contexto, o identifican el modelo o el  
conjunto de datos pertinente a una situación dada, entre otras cosas.

Figura 3.2: Proceso de enriquecimiento semántico de los datos

Figura 3.3: Proceso de explotación de los datos



3.1.1 Especificación de los agentes de Datos Enlazados

La capa de Datos Enlazados está conformada por 4 tipos de agentes. Para la especificación de cada  
agente se usa MASINA [53], y en específico, los modelos de agentes y de tareas.

3.1.1.1. Agente de Datos Enlazados Internos (Internal Linked Data Agent - ILDA)

Son los agentes que brindan la capacidad de extracción, curación, agregación y modelado de las fuentes 
de  información  provenientes  de  agentes  internos,  como  CzA,  AppA y  DA,  para  finalmente  ser 
transformadas  a  formatos  adecuados  para  el  enlazado  de  datos.  Específicamente,  su  objetivo  es 
enriquecer los datos del agente solicitante con información del contexto de MiSCi. El diagrama de  
actividad (ver Figura 3.4) muestra el servicio de este agente, y está compuesto por dos sub-servicios; el  
primero extrae los datos de las fuentes internas, y el segundo enriquece estos datos con información del 
contexto y de las ontologías.

Modelo de Agente de ILDA. Este modelo indica el tipo de agente, el rol que cumple y la descripción de  
su funcionalidad:

 Tipo: agente de servicio.
 Roles: ofrecer servicio de extracción y enriquecimiento de los datos generados por el MiSCi.
 Descripción: procesa solicitudes para extraer y enriquecer datos de MiSCi con información del 

contexto (Cx WS) y de las ontologías (MO WS), a petición de los agentes CzA, AppA, DA

Modelo de tareas de ILDA. El servicio “Enriquecer Datos” del agente ILDA presenta las siguientes 
tareas:

 T1. Recibir la solicitud del agente solicitante
 T2. Extraer datos del agente solicitante
 T3. Modelar los datos del agente solicitante
 T4. Generar los datos como RDF

3.1.1.2. Agente de Datos Enlazados Externos (External Linked Data Agent - ELDA)

Son los agentes que brindan la capacidad de extracción, curación, agregación y modelado de las fuentes 
de información provenientes del exterior de MiSCi (Redes Sociales, Páginas Web, entre otros), para 
finalmente ser transformadas a formatos adecuados para el enlazado de datos, que permitan enriquecer 
semánticamente a la capa CAL del MiSCi con información del exterior. Es decir, ofrece el servicio de 

Figura 3.4: Diagrama de actividad de ILDA.



extracción y enriquecimiento de las fuentes externas al MiSCi. En la Figura 3.5 se observa su diagrama 
de actividad.

Modelo de Agente de ELDA:
 Tipo: agente de servicio.
 Roles:  ofrecer servicio de extracción y enriquecimiento de los datos de fuentes externas al  

MiSCi.
 Descripción:  procesa  solicitudes  para  extraer  y  enriquecer  datos  provenientes  del  exterior 

(Redes Sociales, Páginas Web, entre otros) con información del contexto (Cx WS) y de las 
ontologías (MO WS).

Modelo  de  tareas  de  ELDA. Las  tareas  del  servicio  “Enriquecer  Datos”  de  este  agente  son  los 
siguientes:

 T1. Recibir la solicitud
 T2. Extraer datos de la fuente externa
 T3. Modelar los datos de la fuente externa
 T4. Generar los datos como RDF

3.1.1.3. Agente de  Integración de Datos Enlazados (Linked Data Integration Agent - 
LDIA)

Es el agente que brinda la capacidad de vincular y publicar la información interna y externa generada 
por ILDA y/o ELDA. Este agente vincula los datos, para luego ser publicados como Datos Enlazados.  
En la Figura 3.6 se observa su diagrama de actividad.

Modelo de Agente de LDIA.
 Tipo: agente de servicio.

Figura 3.5: Diagrama de actividad del caso de 
uso de ELDA.

Figura 3.6: Diagrama de actividad del 
caso de uso de LDIA.



 Roles: ofrecer servicio de vinculación y publicación de datos enriquecidos.
 Descripción:  procesa  solicitudes  de  vinculación  de  datos  enriquecidos  con  los  distintos 

conjuntos de datos obtenidos en anteriores invocaciones, que luego son publicados como Datos 
Enlazados.

Modelo de tareas de LDIA. Las tareas del servicio “Vincular y Publicar los Datos Enriquecidos” de este 
agente son:

 T1. Recibir la solicitud con los datos enriquecidos
 T2. Vincular los datos enriquecidos
 T3. Publicar los datos enriquecidos

3.1.1.4. Agente de Conocimiento de Datos Enlazados (Linked Data Knowledge Agent - 
LDKA)

Son  los  agentes  que  ofrecen  mecanismos  para  explotar  el  conocimiento  vinculado  a  los  Datos 
Enlazados,  permitiendo  capacidades  de:  análisis  semántico,  manejo  de  ambigüedad,  etiquetado 
semántico, búsqueda exploratoria, visualización, filtrado, entre otros. Los servicios que presta LDKA 
son: i) Recomendar Información usando inferencia híbrida de lógica descriptiva/dialéctica para retornar 
información  según  la  necesidad  particular  de  un  agente;  ii)  Generar  Modelos  de  Aprendizaje 
Automático que permite retornar modelos de conocimiento basado en distintas técnicas de Aprendizaje 
Automático como árboles de decisiones,  redes bayesianas,  crónicas,  redes neuronales como las de 
aprendizaje  profundo,  etc.;  iii)  Generar  Datos  para  entrenamiento  de  modelos  de  conocimiento, 
muestreos, etc.; iv) Aprender Ontologías usa los Datos Enlazados para poblar nuevas ontologías. El 
diagrama de actividad (ver Figura 3.7) muestra los detalles de los servicios prestados por LDKA.

Figura 3.7: Diagrama de actividad del caso de uso de LDKA.



Los cuatros servicios para explotar el conocimiento vinculado a los Datos Enlazados, permiten mejorar 
trabajos previos vinculados a la integración de datos, construcción de recomendadores o modelos de 
máquinas de aprendizaje más robustos, entre otros.

Modelo de Agente de LDKA. El modelo de agente de LDKA se describe de la misma manera que los 
anteriores agentes.

 Tipo: agente de servicio
 Roles:  ofrecer  servicio  de  explotación  del  conocimiento,  como  Recomendar  información, 

Generar modelos de Aprendizaje Automático, Generar datos, o Aprender Ontologías.
 Descripción:  explora  los  Datos  Enlazados  y  realiza  las  transformaciones  del  conocimiento 

según  el  tipo  de  solicitud  (Recomendar  información,  Generar  modelos  de  Aprendizaje 
Automático, Generar datos o Aprender Ontologías).

Modelo de tareas de LDKA. En la Tabla 3.1 se definen las tareas del agente LDKA, por cada servicio 
prestado.

Tabla 3.1: Servicios y tareas de LDKA.

LDKA-S1. Recomendar información

T1. Recibir la solicitud
T2. Inferencia híbrida basado en lógica descriptiva/dialéctica
T3. Retornar información solicitada

LDKA-S2. Generar modelos de Aprendizaje Automático

T1. Recibir la solicitud
T2.  Generar  modelo  de  conocimiento  basado  en  técnicas  tales  como  crónicas,  redes 
neuronales, árboles de decisión, redes bayesianas u otros.
T3. Retornar modelo de conocimiento

LDKA-S3. Generar datos de entrenamiento

T1. Recibir la solicitud
T2. Generar los datos de entrenamiento
T3. Retornar los datos

LDKA-S4. Aprender Ontologías

T1. Recibir la solicitud
T2. Extraer fuentes de datos
T3. Enriquecer Ontologías

3.1.2 Experimentación

Esta  sección  muestra  un  resumen  extenso  del  escenario  2  “Explotar  Datos”  del  caso  de  estudio 
presentado en [50], cuyos detalles se encuentran en la sección 4 del Anexo 3.A. Los datos de entrada 
necesarios  para  este  escenario  son  recogidos  previamente,  o  en  paralelo,  por  el  proceso  de 



enriquecimiento (ver escenario 1 en la sección 4 del Anexo 3.A). Estos datos de entrada son publicados 
como Datos Enlazados por el agente LDIA.

Este escenario tiene como objetivo mostrar cómo se usan los Datos enlazados por el agente LDKA en 
la capa LDL del MiSCi. Además, se muestra el uso de los servicios de LDKA, que requieren de otros 
servicios ofrecidos por el mismo. Por ejemplo, en la Figura 3.8 se observa el diagrama de actividad del  
agente  de  conocimiento  (Knowledge  Agent  -  KA)  del  MiSCi,  para  el  servicio  de  Generar  
Conocimiento, que invoca a otros dos servicios del agente LDKA.

A continuación, se describe este escenario (ver Figura 3.9): 
1. El agente CzA detecta problemas en los signos vitales del  ciudadano, y genera la señal de 

alarma al HSS (Sistema Inteligente de Salud), a través del AppA que caracteriza a ese sistema.
2. El agente AppA (HSS) solicita al servicio Recomendar Información del agente LDKA, buscar 

los  ciudadanos  en  los  alrededores  con  capacidades  de  practicar  los  primeros  auxilios,  que 
permita brindarle atención médica inmediata al paciente. 

3. LDKA retorna la información solicitada por AppA (HSS).
4. Luego, AppA (HSS) envía la notificación a los ciudadanos a través de CzA.
5. En los  distintos  procesos  de  actualización  de  conocimiento  van  emergiendo  ontologías,  en 

consecuencia  el  componente  MO WS va  solicitando el  servicio  de  Aprender  Ontología  de 
LDKA, para extraer información y enriquecer dichas ontologías emergentes.

6. LDKA retorna las ontologías emergentes enriquecidas.
7. El AppA (HSS) solicita al servicio Recomendar Información del agente LDKA, recomendar los 

servicios de ambulancias, para tratar al paciente y trasladarlo al centro médico más cercano.
8. LDKA retorna la información solicitada por AppA (HSS).
9. El  agente  AppA (HSS) también solicita  al  servicio  Generar  Conocimiento  (Figura  3.8)  del  

agente KA, los posibles diagnósticos y sugerencias de tratamiento.
10. El agente KA necesita un modelo de conocimiento para resolver el problema, por lo que activa  

el servicio Generar Modelos de Aprendizaje Automático de LDKA, para obtener el modelo de 
conocimiento sobre dicho problema.

11. LDKA genera y retorna el modelo de conocimiento a KA.
12. También KA necesita datos de entrenamiento para afinar el modelo de conocimiento, para eso 

solicita al servicio Generar Datos de LDKA.
13. LDKA genera y retorna los datos de entrenamiento para el modelo de conocimiento de KA.
14. Finalmente, el agente del MiSCi retorna los posibles diagnósticos y sugerencias de tratamiento 

a AppA (HSS).

Figura 3.8: Diagrama de actividad del KA.



En este escenario, se le solicita a LDKA explotar los Datos Enlazados para generar conocimiento y 
responder  a  las  distintas  necesidades  presentes  en  el  MiSCi.  LDKA responde  con  información 
contextualizada y adaptada a cada necesidad.

3.2 Generación Automático de Ontologías basado en Datos Enlazados

Esta sección presenta un resumen extenso de los trabajos presentados en [54, 55], cuyos detalles se 
encuentran en la sección 3 del artículo en el Anexo 3.B y la sección “Materiales y métodos” del artículo 
en el Anexo 3.C, dónde se describe la arquitectura general AOGS (Automated Ontology Generator 
System),  que permite  crear  y  enriquecer  ontologías  emergentes  de  forma autónoma,  usando como 
insumo el paradigma de Datos Enlazados. Se compone de tres capas (ver Figura 3.10):
 Knowledge Base Manager: se basa en las etapas (i) y (ii) del MEDAWEDE. En nuestro caso, se 

encarga de gestionar y almacenar el conocimiento de AOGS. 
 Knowledge Generator Manager: se basa en las etapas (iii), (iv) y (v) de MEDAWEDE. En nuestro 

caso,  controla  el  procesamiento  del  conocimiento  de  la  capa  anterior,  y  genera  ontologías 
extendidas con LD.

 Web Services Manager: se basa en la etapa (vi) de MEDAWEDE. En nuestro caso, se encarga de 
recibir las peticiones web realizadas por los clientes a AOGS, por ejemplo, servicio de generación 
de ontologías o servicio de gestión de fuentes de conocimiento.

Figura 3.9: Diagrama de secuencia para explotar datos.



3.2.1 Componentes de la capa Knowledge Base Manager

Los componentes descritos en esta sección permiten gestionar la base de conocimientos del sistema.

1) Ontological Database (OD): Este componente se encarga de almacenar y poner a disposición 
todo el  conocimiento que posee el  sistema con el  fin de generar  ontologías para contextos 
específicos. La OD almacena las clases, propiedades y relaciones de las diferentes ontologías.  
Este  componente  es  activado  por  el  resto  de  componentes  que  necesitan  gestionar  la 
información del sistema.

2) Source List (SL): Este componente muestra una lista de las ontologías que están disponibles en 
la  base  de  conocimiento  del  sistema.  Este  componente  es  activado  por  los  servicios  de 
Knowledge Source Management (KSM). 

3) Add Source (AddS): Se encarga de ampliar la base de conocimiento disponible en el sistema 
para generar una ontología en un contexto específico. Este componente es activado por los 
servicios KSM junto con la ontología a añadir al sistema.

4) Delete Source (DelS): Se encarga de reducir la base de conocimiento disponible en el sistema 
para generar una ontología en un contexto específico. Este componente es activado por los 
servicios KSM junto con el id de la ontología a eliminar del sistema.

3.2.2 Componentes de la capa Knowledge Generator Manager

En esta sección se describen los componentes que permiten generar la ontología del contexto solicitada 
por el cliente.

Figura 3.10: Diagrama de componentes de nuestra arquitectura basada en 
MEDAWEDE.



1) Base Ontology Creation (BOC): Este componente crea una ontología base con los conceptos 
definidos como Términos de Búsqueda. Los Términos de Búsqueda son proporcionados por el 
cliente para obtener una ontología de un dominio específico. Estos conceptos serán los nodos 
raíz  de  la  ontología  a  generar.  En  los  siguientes  componentes,  estos  conceptos  base  se 
relacionarán con los nuevos conceptos seleccionados y a partir del enriquecimiento con Datos 
Enlazados. 

2) Similarity Search (SS): Este componente encuentra los posibles conceptos ontológicos a añadir 
a la ontología base. Para ello, busca los sinónimos de los Términos de Búsqueda, y compara los  
Términos de Búsqueda y sus sinónimos con los conceptos almacenados en el OD, extrayendo 
las coincidencias. El resultado es una lista de los conceptos que coinciden con los términos de 
búsqueda y sus sinónimos.

3) Ontological Alignment (OA): Este componente se encarga de la alineación de los conceptos 
ontológicos  obtenidos  en  SS,  ponderando  las  relaciones  que  existen  entre  los  conceptos 
encontrados  con  los  Términos  de  Búsqueda  y  sus  sinónimos.  La  ponderación  sigue  las 
siguientes  reglas:  i.  Si  un  Término  de  Búsqueda  coincide  perfectamente  con  el  concepto 
encontrado,  su puntuación es  máxima (1).  ii.  Si  un término de búsqueda está  parcialmente 
inmerso en el concepto encontrado, es decir, se presenta como sufijo o prefijo, su puntuación es 
la mitad de la coincidencia perfecta (0,5). iii. Si un Término de Búsqueda está completamente 
inmerso como subcadena del  concepto encontrado, su puntuación será la cuarta parte de la 
coincidencia perfecta (0,25). A continuación, castiga con 0 un concepto sin relación semántica 
con los términos de búsqueda. Por último, selecciona los conceptos que cumplen el umbral de 
aceptación proporcionado por el solicitante de la ontología. Este umbral define la severidad o 
permisividad del filtrado de los conceptos seleccionados. El resultado de este componente es 
una lista de conceptos que se integrarán en la ontología base.

4) Strong Merging (SM): Integra los conceptos seleccionados de las ontologías gestionadas por 
OD. En este proceso, copia la lista de conceptos seleccionados dentro de la ontología base,  
considerando  las  jerarquías  conceptuales  (nodos  padre  e  hijo,  propiedades  y  relaciones) 
presentes  en  cada  ontología  fuente.  El  resultado  es  la  ontología  base  poblada  con  el 
conocimiento correspondiente al dominio solicitado.

5) Data  Linking  (DLi):  Enriquece  la  ontología  generada  con  Datos  Enlazados,  utilizando  el 
servicio DBpedia Spotlight (https://www.dbpedia-spotlight.org/), que proporciona una solución 
basada  en  Datos  Enlazados  para  relacionar  palabras  clave  con  identificadores  de  recursos 
relacionados en el grafo de conocimiento de Dbpedia. Por último, los recursos encontrados se 
vinculan  a  cada  concepto  de  la  ontología.  Por  ejemplo,  al  buscar  «COVID»,  el  servicio 
devuelve http://dbpedia.org/resource/COVID-19. A continuación, esta respuesta se vincula al 
concepto COVID de la ontología base.

6) Export Formats (EF): Se encarga de transformar la ontología enriquecida con Datos Enlazados 
al formato requerido por la interfaz. Entre los formatos manejados actualmente se encuentran 
JSON-LD, RDF/XML y N-TRIPLES.

3.2.3 Componentes de la capa Web Services Manager

A continuación se ofrece una visión general de los componentes que prestan los distintos servicios del 
sistema.



1) Knowledge Source Management (KSM): Este componente se encarga de ofrecer servicios para 
ampliar o reducir la base de conocimiento gestionada por el sistema.

2) Ontology Generation (OG): Este componente se encarga de activar el proceso de creación de 
ontologías para un contexto específico. El resultado de este componente es la creación de una 
ontología explotando el conocimiento ontológico disponible en el sistema y Datos Enlazados. 
El servicio ofrecido recibe los parámetros de búsqueda como Términos de Búsqueda, formato 
de generación de la ontología, entre otros.

3.2.4 Comportamiento de AOGS

Nuestro  sistema  presenta  dos  comportamientos  principales:  1)  Gestión  del  conocimiento  y  2) 
Generación del conocimiento. En esta sección se detalla cada uno de ellos.

1) Gestión del Conocimiento
Objetivo: listar, añadir o borrar las ontologías que se utilizan como fuente de conocimiento gestionado 
por el sistema.

Descripción general: El proceso mostrado en la Tabla 3.2, comienza cuando el servicio web KSM 
recibe una petición de gestión de fuente de conocimiento con sus parámetros requeridos (Paso 1).

Tabla 3.2: Macro-algoritmo de la gestión del conocimiento.

Entrada: Tipo de solicitud y sus parámetros

Proceso:
1. KSM procesa la solicitud.
2. KSM comprueba los parámetros de la solicitud.
3. El KSM activa el componente correspondiente al tipo de solicitud.
3.1. Si el tipo es listar, KSM invoca SL.
3.1.1. SL solicita el listado de ontologías a OD.
3.2. Si el tipo es añadir, KSM invoca a AddS con la ontología a añadir.
3.2.1. AddS solicita a OD que añada la ontología.
3.3. Si el tipo es eliminar, KSM invoca a DelS con el ID de la ontología que se va a eliminar.
3.3.1. DelS solicita al OD que borre el ID.

Salida: Solicitud procesada

En el paso 2, KSM verifica los parámetros en función del tipo de solicitud. En el caso de listar, no 
requiere parámetros adicionales. En el caso de añadir, el parámetro recibido es una ontología que debe 
añadirse al sistema. En el caso de eliminar, el parámetro recibido es un ID de la ontología que se desea  
eliminar del sistema. A continuación, KSM activa el componente correspondiente al tipo de solicitud 
(Paso 3). Si se trata de listar las ontologías que posee el sistema, KSM invoca a SL (Paso 3.1).

A continuación, SL solicita a OD la lista de ontologías (3.1.1). Si hay que añadir una ontología al  
sistema, KSM invoca a AddS (paso 3.2). A continuación, AddS solicita a OD que añada la ontología al 
sistema (3.2.1). Si se trata de eliminar una ontología del sistema, KSM invoca a DelS (paso 3.3). A 
continuación, DelS solicita a OD que elimine la ontología del sistema (3.3.1). Este proceso permite 
mantener actualizados los conocimientos gestionados por el AOGS.



2) Generación del conocimiento
Objetivo: generar  una  ontología  con  Datos  Enlazados  y  el  conocimiento  ontológico  del  sistema, 
utilizando parámetros de búsqueda como términos de búsqueda, umbral de aceptación, entre otros.

Descripción general: La Tabla 3.3 presenta el proceso de Generación de Conocimiento, que comienza 
cuando el servicio web OG recibe la solicitud de creación de una ontología con los parámetros de 
generación (Paso 1). A continuación, BOC crea la ontología base y añade los Términos de Búsqueda 
como nodos raíz (Paso 2). En el paso 3, genera una lista de sinónimos de los términos de búsqueda. A 
continuación, SS compara los términos de búsqueda y sus sinónimos con los conceptos almacenados en 
OD (paso 4).

Tabla 3.3: Macro-algoritmo de generación de conocimiento.

Entrada: Términos de Búsqueda, umbral de aceptación y formato de la ontología

Proceso:
1. La OG tramita la solicitud.
2. BOC crea la ontología base.
3. SS busca sinónimos de los Términos de Búsqueda.
4. SS compara los parámetros de búsqueda con el conocimiento en OD.
5. SS genera la lista de coincidencias con Términos de Búsqueda y sinónimos.
6. OA pondera los conceptos obtenidos en la lista de coincidencias.
7. OA filtra los conceptos que cumplen el umbral de aceptación suministrado.
8. OA genera la lista de conceptos seleccionados.
9. SM integra los conceptos seleccionados.
10. DLi enriquece la ontología con Datos Enlazados.
11. EF transforma la ontología al formato requerido

Salida: Ontología generada

A continuación, SS genera las listas de coincidencias con los términos de búsqueda y sus sinónimos 
(paso 5). En el paso 6, OA pondera las relaciones existentes entre las listas de coincidencias con los  
términos de búsqueda y sus sinónimos (véase la sección 3.2.2.3). Con las ponderaciones, OA filtra los 
conceptos que cumplen el umbral de aceptación suministrado (Paso 7) y genera la lista de conceptos  
seleccionados (Paso 8). Por último, SM integra los conceptos seleccionados en la ontología (paso 9). 
Una vez construida la ontología, DLi procede a buscar y vincular cada concepto de la ontología con el  
conocimiento  disponible  en la  web utilizando el  paradigma de  Datos  Enlazados  (Paso 10).  Como 
último paso, EF transforma la ontología al formato requerido (Paso 11). El resultado de estos procesos 
es  una  ontología  enriquecida  con  Datos  Enlazados  que  explota  el  conocimiento  disponible  en  el 
sistema.

3.2.5 Experimentación

Esta sección presenta un resumen extenso del caso de estudio del generador ontológico [54], enfocado 
en el dominio del COVID-19, basado en la sección 4 del artículo en Anexo 3.B. Es importante destacar 
que esta sección del anexo también aborda su aplicación en el dominio de la gestión energética.



En este caso de estudio se toma como fuente de conocimiento las ontologías del dominio COVID-19, 
que es una enfermedad infecciosa causada por el virus SARS-CoV-2 [24]. La Tabla IV del Anexo 3.B 
muestra  las  ontologías  vinculadas a  COVID-19 que se  seleccionaron del  repositorio de ontologías 
https://bioportal.bioontology.org/ontologies.

AOGS activa su primer proceso, que es la Gestión del Conocimiento, este proceso gestiona la carga de 
ontologías al sistema como fuentes de conocimiento para el proceso de Generación de Conocimiento. 
Para ello, ejecuta el servicio web KSM con sus parámetros, proceso que se repite con cada ontología 
que  se  añade  al  sistema.  Posteriormente,  el  KSM  recibe,  procesa  y  ejecuta  los  módulos 
correspondientes al tipo de petición recibida (ver pasos 1, 2 y 3 de la Tabla 3.2). En este caso, activa el  
módulo AddS (ver paso 3.2 en la Tabla 3.2), que se encarga de añadir la ontología en OD del sistema 
(ver paso 3.2.1 en la Tabla 3.2).

Luego, AOGS activa al proceso de Generación de Conocimiento, este proceso genera la ontología 
usando como insumo los Datos Enlazados del sistema. Para ello, se ejecuta el servicio web OG pasando 
como parámetros los Términos de Búsqueda, el formato de la ontología y el umbral de aceptación. Por  
ejemplo, la Figura 3.11 indica que la ontología se generará en formato RDF/XML, con un umbral de 
aceptación del 70%, y el área de interés de la nueva ontología es “COVID” y “test”.

El componente SS, utilizando los términos de búsqueda, obtiene sus sinónimos (véase el paso 3 de la 
Tabla  3.3).  Por  ejemplo,  para  “COVID”  se  encontró  “Coronavirus”,  mientras  que  para  “Test”  se 
encontraron  varios  sinónimos  como  “trial”,  “exam”,  “quiz”,  entre  otros.  A continuación,  realiza 
consultas para obtener los conceptos ontológicos de las ontologías añadidas al sistema (véanse los 
pasos  4  y  5  de  la  Tabla  3.3).  Algunos  de  los  posibles  resultados  son  “Untested  for  COVID-19”, 
“COVID-19  Diagnosis”,  “Tested  for  2019-nCov  (Wuhan)  infection”.  Sin  embargo,  no  todos  los 
conceptos  acabarán  poblando  la  ontología,  ya  que  muchos  de  ellos  no  están  semánticamente 
relacionados con el dominio consultado. Por ejemplo, “intestine cancer”, “assay screened entity” y 
“testis”, por lo que será necesario  filtrar estos conceptos.

La figura 3.12 muestra algunas ponderaciones entre las listas de coincidencias (azul), y los términos de 
búsqueda (verde oscuro) y sus sinónimos (verde claro) (véase el paso 6 de la tabla 3.3). Por ejemplo, la 
comparación de “COVID” de la  lista  de coincidencias con “COVID” del  término de búsqueda es 
perfecta; por tanto, su puntuación será máxima (1).

Figura 3.11: Interfaz de generación.



En el caso del término de búsqueda “Test”, está parcialmente inmerso dentro del token “untest”, con un  
sufijo añadido (en otros casos, puede presentarse como prefijo); por lo tanto, su puntuación es la mitad 
de la coincidencia perfecta (0,5). En el tercer caso, el término buscado está completamente inmerso 
como  una  subcadena  del  concepto  presente  en  el  listado  (“Test”  en  “intestin”).  En  este  caso,  la 
ponderación es una cuarta parte de la coincidencia perfecta (0,25) para castigar los posibles conceptos 
sin relación semántica con la búsqueda. Así se hace para el resto de conceptos.

En resumen, un concepto cuya etiqueta sea “Tested for COVID-19” puntuará más alto que otro cuya 
etiqueta sea “Study for COVID propagation”, ya que en el primer caso se hace referencia a “Test” y 
“COVID” al mismo tiempo, mientras que en el segundo sólo se hace referencia a “COVID”. Tras la 
ponderación, se eligen los conceptos que cumplen el umbral de aceptación definido (véase el paso 7 de 
la  Tabla  3.3).  Para  este  caso,  70%  es  el  umbral,  y  el  resultado  es  una  lista  con  los  conceptos 
seleccionados (véase la etapa 8 de la Tabla 3.3).

Con la ontología base integrada con los conceptos seleccionados (véase el paso 9 de la Tabla 3.3), se 
utiliza el  paradigma de Datos Enlazados para buscar conceptos que puedan ser  equivalentes a  los  
conceptos de la ontología generada (véase el paso 10 de la Tabla 3.3),  con el fin de crear nuevos 
conceptos en la ontología con información externa. La Figura 3.13 muestra el vínculo entre el concepto 
COVID de la ontología y el concepto COVID de DBpedia.

Figura 3.12: Ponderaciones entre los listados de 
coincidencias (azul) y los términos de búsqueda 
(verde oscuro) y sus sinónimos (verde claro).



Por último, la nueva ontología se transforma al formato requerido (véase el paso 11 de la Tabla 3.3), en 
este caso, a RDF/XML (véase la Figura 3.14).

Figura 3.13: Vinculación de conceptos 
ontológicos con fuentes externas de Datos 
Enlazados.

Figura 3.14: Ontología generada y publicada en 
formato RDF/XML.



4 Recomendador Híbrido Basado en Lógica 
Descriptiva/Dialéctica y Datos Enlazados

En este capítulo se presenta un Sistema de Recomendación Híbrido (Hybrid Recommender System, 
HRS) que combina la lógica descriptiva/dialéctica con Datos Enlazados [56]. Este HRS nace de las 
ideas propuestas por Dos Santos et  al.  [46] y responde a la necesidad de resolver situaciones con 
información  inconsistente,  es  decir,  estados  de  contradicción  o  ambigüedad,  y  de  explotar  la  
información semántica proveniente de la web estructurada como los Datos Enlazados. La estructura del 
capítulo es la siguiente: La sección 4.1, que se basa en la sección 4.1 del Anexo 4.A, presenta el diseño 
arquitectónico nuestro HRS y detalla cada componente. La sección 4.2, en consonancia con la Sección 
4.2 del Anexo 4.A, describe los algoritmos que implementan los componentes del HRS. La sección 4.3 
ilustra un caso de estudio del HRS, basándose en la sección 5 del Anexo 4.A. Finalmente, la sección  
4.4 explora el uso de esta arquitectura, incluyendo un análisis de uno de los fenómenos dialécticos en 
las  competencias  (sección  4.4.1,  basada  en  la  sección  Knowledge  Model  del  Anexo  4.B),  una 
presentación de otros modelos dialécticos (sección 4.4.2, basada en la sección 3 del Anexo 4.C) y un 
análisis general del potencial de la Lógica Dialéctica (sección 4.4.3).

4.1 Arquitectura del HRS

Esta sección ofrece un resumen extenso del trabajo presentado en [56], y los detalles se encuentran en 
la sección 4.1 del Anexo 4.A. En dicho trabajo, se construye un HRS basado en las características de un 
Sistema de  Recomendador  Inteligente,  las  cuales  se  describen a  continuación [57]:  (i)  Fuentes  de 
Conocimiento: son las fuentes que proveen información sobre usuarios, contexto, recursos, entre otros.  
En nuestro  sistema,  estará  conformada principalmente  por  fuentes  de  Datos  Enlazados,  las  cuales 
proveen  datos  con  información  semántica;  (ii)  Adquisición  de  Conocimiento:  se  encarga  de  la 
extracción y procesamiento de datos. En nuestro caso, generará consultas en SPARQL que permitan 
identificar, filtrar y extraer la información disponible en las fuentes de Datos Enlazados para enriquecer 
el  modelo  de  conocimiento;  (iii)  Modelado  de  Conocimiento:  se  especifica  el  paradigma  de 
representación del conocimiento; para nuestro caso, se representa como Datos Enlazados y axiomas 
basados  en  lógica  descriptiva/dialéctica;  (iv)  Razonamiento  y  verificación:  se  implementan  los 
mecanismos  de  razonamiento,  ofreciendo  la  capacidad  de  explotar  el  conocimiento  e  inferir 
recomendaciones. En nuestro sistema, se utilizará un mecanismo híbrido, por un lado, se utiliza un 
razonador de lógica descriptiva que permite explotar las fuentes de Datos Enlazados para enriquecer el  
modelo de conocimiento, y por otro lado, se utiliza un razonador de Lógica Dialéctica que verifica el  
modelo de conocimiento y evalúa las recomendaciones a través de los diferentes eventos dialécticos.

La Figura 4.1 muestra los componentes de nuestro HRS, distribuidos en dos grandes grupos: el primer 
grupo está compuesto por los componentes que permiten razonar para extraer información o inferir 
recomendaciones, incluso en presencia de inconsistencias o ambigüedades en el Problema o Consulta 
(PoQ), o en los datos extraídos de los Datos Enlazados,  llamados  Reasoning Engines.  El  segundo 
grupo,  llamado  Manager,  está  compuesto  por  los  componentes  encargados  de  gestionar  todos  los 
procesos necesarios para llegar a una recomendación. Estos determinan cuándo y qué se debe explotar 



de  los  Datos  Enlazados,  ya  sea  para  enriquecer  las  ontologías  o  vocabularios  del  modelo  de 
razonamiento, o para enriquecer semánticamente los datos o recomendaciones encontradas.

4.1.1 Componentes del Grupo Reasoning Engines

Description Logic Engine (DeLE): Este motor es intrínseco a los Datos Enlazados, ya que tanto la 
estructura semántica de los datos como los mecanismos de consulta (lectura, creación, actualización o 
borrado de  tripletes)  se  basan en lógica  descriptiva.  Además,  el  motor  permite  explotar  diferentes 
fuentes de datos, gracias a la técnica de Datos Enlazados que interconecta los datos a través de puntos  
de acceso distribuidos o endpoint locales (para perfiles personales y contexto), o endpoint públicos 
(endpoint  de Dbpedia,  endpoint  de Wikidata,  entre muchos otros).  Este motor recibe una consulta 
basada en tripletes y devuelve los datos encontrados como variables.

Dialetheic  Logic  Engine  (DiLE): Este  motor  responde  mediante  consultas  construidas  como 
conjeturas sobre los modelos descritos en lógica de primer orden, donde se detallan axiomas y sus 
hechos, pudiendo detectar y razonar en estados de ambigüedad o inconsistencia, gracias a la capacidad 
que ofrece la Lógica Dialéctica. Este motor recibe una consulta como conjetura y modelo, y retorna lo 
inferido de la conjetura sobre el modelo.

4.1.2 Componentes del Grupo Manager

Vocabulary Manager (VM): se encarga de identificar y seleccionar los vocabularios y ontologías que 
son  necesarios  para  procesar  las  peticiones  recibidas  por  el  recomendador.  El  gestor  busca  hacer 
coincidir los términos de la petición con las clases y propiedades del conocimiento que posee. Si este 
objetivo no se logra, entonces se apoya en Query Manager para extraer nuevo conocimiento de las  
fuentes  de  Datos  Enlazados,  que  pueda  enriquecer  las  ontologías  o  vocabularios  del  modelo  de 
razonamiento.  Este  componente  toma  los  axiomas  presentes  en  la  entrada  del  PoQ  y  extrae  los 
predicados,  ya  que  esos  predicados  son  los  conceptos  que  se  necesitan  identificar.  Luego,  esos 

Figura 4.1: Diagrama de componentes de nuestro HRS.



predicados se comparan con la base de conocimiento, para determinar si se conocen los URIs que 
identifican y se relacionan con los conceptos. Si no es así, se invoca el Query Manager para generar 
consultas para los URIs que representan estos conceptos desconocidos (más en la Tabla 4.3).

Query Manager (QM): se encarga de preparar y generar las consultas necesarias para enriquecer o 
recomendar la información.

 Por parte del DeLE, se generan consultas basadas en tripletas que explotan los datos contenidos 
en las fuentes de Datos Enlazados, apoyándose en la Base de Conocimiento (Knowledge Base, 
KB) de los vocabularios y ontologías manejados por el recomendador y las fuentes de Datos 
Enlazados. En concreto, la consulta se construye a través de tres plantillas, según el tipo de 
petición: (i) “Concept as URI” permite buscar la URI que representa un concepto. (ii) “Property 
related to a Concept as URI” permite buscar la URI que representa una propiedad que está 
relacionada con una URI de un concepto conocido.; y (iii) “Knowledge Extraction” permite 
extraer todo el conocimiento disponible de una URI.

 Por parte del DiLE, se generan consultas basadas en conjeturas descritas en los axiomas del 
PoQ,  que  permiten  probar  e  inferir  las  recomendaciones,  incluso  si  hay  inconsistencia  o 
ambigüedad en el PoQ o en los datos. En concreto, se analiza cada axioma del PoQ y se extrae  
el  predicado  que  sigue  a  cada  símbolo  de  implicación  (=>),  ya  que  formará  parte  de  las 
conjeturas que el HRS utilizará para probar el modelo y los datos.

Conversion Manager (ConM): Se encarga de preparar y generar las transformaciones de datos para 
permitir el intercambio de información entre los diferentes razonadores que tiene el recomendador y la  
información encontrada, necesarias para que los resultados de un razonador puedan ser utilizados por el 
otro. Por ejemplo, para utilizar los datos generados por el DeLE con DiLE, se requiere transformar los  
datos,  ya  que el  DeLE devuelve  una tabla  inferida  con los  valores  encontrados  por  cada variable 
solicitada, y el DiLE necesita un modelo con los datos descritos como hechos en Lógica de Primer 
Orden. Estas transformaciones se crean a partir del modelo de razonamiento, utilizando la base de 
conocimiento  que  alcanzó  VM y  la  consulta  de  extracción  de  conocimiento  que  genera  QM.  En 
concreto, se realizan dos tipos de conversiones, el primer tipo convierte los datos de una variable o 
concepto extraído de los Datos Enlazados.  El  segundo tipo convierte  los datos de dos variables o 
conceptos relacionados que se extrajeron de los Datos Enlazados.

Recommendation Manager (RM): Se encarga de fusionar y filtrar la información obtenida por los 
razonadores, permitiendo recoger y entregar el conocimiento alcanzado por todos los mecanismos que 
componen el recomendador. En concreto, RM solicita a ConM las conjeturas que permitirán validar el  
modelo de razonamiento con los elementos extraídos a través de DeLE. A continuación, DiLE filtra las  
recomendaciones;  para ello,  se detectan los eventos dialécticos utilizando las diferentes conjeturas. 
Ahora,  con  las  recomendaciones  alcanzadas,  se  procede  a  evaluar  el  grado  de  cercanía  de  cada 
recomendación al perfil del usuario. Esta evaluación consiste en sumar las características del perfil de 
usuario que coinciden con la recomendación. Finalmente, las recomendaciones se ordenan de mayor a 
menor, según el resultado de cada evaluación (más detalles en la Tabla 4.5).

Control Manager (CM): es el responsable de todas las decisiones del HRS, determinando cuándo y 
cómo deben invocarse los gestores y razonadores en función de sus capacidades. Este gestor utiliza el  
meta-razonamiento para tomar estas decisiones (más detalles en la Tabla 4.2). El meta-razonamiento 
busca cumplir los siguientes objetivos: (i) verificar que el PoQ esté correctamente definido, probándolo 
con DiLE (ver Tabla 4.2); (ii) identificar los conceptos presentes en el PoQ, buscándolos con DeLE 



(ver  Tabla  4.3);  (iii)  extraer  el  conocimiento  asociado  a  los  conceptos  identificados  en  el  PoQ, 
extrayéndolos con DeLE (ver Tabla 4.4); (iv) verificar y filtrar las recomendaciones, usando DiLE (ver 
Tabla 4.5); y (v) extraer el contenido relacionado con las recomendaciones, usando DeLE (ver Tabla  
4.6).

4.2 Funcionamiento del HRS

Esta sección es un resumen extenso del trabajo presentado en la sección 4.2 del Anexo 4.A, dónde se 
especifica el funcionamiento del HRS construido. En general, los pasos seguidos por el HRS pueden 
verse en el Macro-Algoritmo de la Tabla 4.1. El proceso comienza cuando un usuario solicita una 
recomendación, proporcionando la PoQ que desea resolver. Lo primero que hace CM es ejecutar la 
entrada con DiLE, determinando si  los axiomas están correctamente descritos (Paso 1).  Si  no son 
correctos, el proceso se detiene (Paso 1.1). En caso de que sea correcta, entonces el CM activa una serie 
de  procesos  que  permiten  incorporar  conocimiento  de  los  Datos  Enlazados  y  encontrar  posibles 
recomendaciones (Paso 2). En el paso 2.1, se determina si existen ontologías y/o vocabularios que 
permitan identificar los términos utilizados por el PoQ. En el paso 2.2, se extrae de los Datos Enlazados 
la información relativa a los términos identificados en el paso anterior. Esto permite el enriquecimiento 
con conocimiento de las posibles recomendaciones que se alcanzarán. En el paso 2.3, se verifican las  
inconsistencias  y/o ambigüedades presentes  en los  datos  recogidos para  el  PoQ, y se  obtienen las 
recomendaciones  encontradas.  En  el  paso  2.4,  estas  recomendaciones  se  enriquecen  con  el 
conocimiento relacionado buscado a través de las fuentes de Datos Enlazados. Por último, se entregan 
las recomendaciones enriquecidas. 

Tabla 4.1: Macro-algoritmo de nuestro HRS.

Entrada: PoQ

Proceso:
1. El CM verifica la PoQ con el DiLE.
1.1. Si no es correcto el PoQ, se detiene el proceso de recomendación.
2. CM activa cada proceso.
2.1. Proceso: Identificación de URI utilizando Datos Enlazados (véase la Tabla 4.2).
2.2. Proceso: Extracción de Conocimiento utilizando Datos Enlazados (véase la Tabla 4.3).
2.3. Proceso: Verificación y Filtrado de Recomendaciones utilizando Datos Enlazados (Tabla 4.4).
2.4. Proceso: Extracción de Contenidos Relacionados a las Recomendaciones utilizando Datos Enlazados (Tabla 4.5).

Salida: Recomendaciones enriquecidas

A continuación se describen con más detalle los distintos procesos:

4.2.1 Identificación de URI utilizando Datos Enlazados

Objetivo: identificar los términos o conceptos utilizados en el PoQ, buscando URIs de una ontología 
y/o vocabulario que los represente. 



Descripción general: El proceso mostrado en la Tabla 4.2, comienza cuando el CM recibe la PoQ y 
activa la VM para reconocer las características de dicha PoQ (Paso 1). En el paso 2, la VM verifica si  
los Términos o Conceptos (ToC) presentes en el PoQ están relacionados con un vocabulario u ontología 
conocida por el HRS en su KB. Esta relación se identifica a través de un URI, que permite extraer 
nuevo conocimiento de las fuentes de Datos Enlazados. Por ejemplo, una enfermedad se representa 
mediante el URI http://dbpedia.org/ontology/disease. Para ello, el paso 2.1 extrae cada ToC en PoQ 
(véase el componente VM). A continuación, se comprueba cada ToC extraído de PoQ (paso 2.2). Si  
HRS no conoce la ToC en su KB, VM debe encontrar un URI que represente la ToC (paso 2.2.1). En  
este caso, VM activa QM (Paso 2.2.1.1), de modo que QM prepara consultas para encontrar un URI a  
través de DeLE que represente el ToC (Paso 2.2.1.2). Ejemplos de este proceso se describen en el 
componente QM, concretamente, en los tipos de consulta  Concept as URI y  Property related to a 
Concept as URI. En el paso 2.2.1.3, VM ejecuta DeLE con las consultas recibidas por QM, lo que le  
permite encontrar un URI que represente ToC. Entonces, ToC, con su URI, es añadido a KB como un  
concepto  identificado  por  HRS  (Paso  2.2.1.4).  Todos  estos  URIs  identificados  en  este  proceso 
permitirán la extracción de conocimiento para el siguiente proceso.

Tabla 4.2: Macro-algoritmo de identificación de URIs mediante Datos Enlazados.

Entrada: PoQ

Proceso:
1. El CM activa VM.
2. VM comprueba si ToC está en KB:
2.1. VM extrae los ToC presentes en el PoQ.
2.2. Para cada ToC del PoQ:
2.2.1. Si ToC no está Identificado, requiere actualización de KB:
2.2.1.1. VM activa QM.
2.2.1.2. QM prepara las consultas para extraer las URI.
2.2.1.3. VM invoca DeLE con las consultas generadas.
2.2.1.4. Se añade la ToC a la KB.

Salida: KB actualizados

4.2.2 Extracción de Conocimiento utilizando Datos Enlazados

Objetivo: extraer  la  información  que  debe  recomendarse  utilizando  las  URIs  como  punto  de 
correspondencia entre las fuentes de Datos Enlazados y ToC.

Descripción general: La Tabla 4.3 presenta el proceso de Extracción de Conocimiento, que comienza 
cuando el CM ha identificado cada ToC con sus respectivas URIs, y necesita extraer información de las  
fuentes de Datos Enlazados para encontrar posibles recomendaciones (Paso 1). El CM lleva a cabo esta  
tarea activando QM (Paso 1.1), de forma que QM prepara las consultas para extraer información de los 
Datos  Enlazados asociados a  las  PoQ utilizando KB (Paso 1.2).  Se realiza  de la  siguiente  forma: 
utilizando los URIs conocidos del proceso anterior y la tripleta para el tipo de consulta “Knowledge 
Extraction” (ver Componente QM), ahora bien, en los casos en que dos conceptos están relacionados,  
sustituye ?URI_CONCEPT y ?URI_PROPERTY por los URIs respectivos. En los casos en que un 
concepto no está relacionado con otros, solo se sustituye ?URI_CONCEPT. Teniendo las consultas, el 



CM invoca el DeLE y recoge información de fuentes, como la preferencia del usuario, el contexto y 
otros conocimientos asociados al PoQ (Pasos 1.3 y 1.4).

Tabla 4.3: Macro-algoritmo de extracción de conocimiento mediante Datos Enlazados.

Entrada: PoQ

Proceso:
1. CM necesita extraer información para el PoQ utilizando KB.
1.1. CM activa QM.
1.2. QM prepara las consultas para extraer la información asociada al PoQ utilizando la KB.
1.3. CM invoca DeLE con consultas a la fuente local (conocimiento del contexto y preferencias del usuario).
1.4. CM invoca DeLE con consultas a otras fuentes (conocimiento general).

Salida: Conocimientos Extraídos

4.2.3 Verificación y Filtrado de Recomendaciones utilizando Datos Enlazados

Objetivo: verificar  las  inconsistencias  y/o  ambigüedades  presentes  en  los  datos  recogidos  y  en  el 
modelo, y generar recomendaciones.

Descripción general: El proceso comienza cuando se ha identificado la ToC y se han extraído todos los 
datos utilizando el paradigma de Datos Enlazados (Tabla 4.4). Entonces, el CM activa el RM para  
generar las recomendaciones (Paso 1). El RM lleva a cabo una serie de procesos para conseguir las  
recomendaciones. El primero es convertir los datos recogidos por DeLE en el proceso anterior a la  
estructura recibida por DiLE. Para ello, se activa la tarea ConM (Paso 2). En el Paso 2.1, ConM realiza 
esta tarea mediante dos tipos de conversiones, que se describen en el componente ConM. La segunda es 
activar QM (Paso 3) para generar las consultas basadas en el modelo que recibe DiLE. Para ello, QM,  
en el Paso 3.1, debe entregar las consultas basadas en conjeturas según los axiomas presentes en PoQ. 
Este proceso se describe en el componente QM. Por último, RM ejecuta DiLE con PoQ, los datos 
transformados por ConM y las distintas conjeturas entregadas por QM (Paso 4). DiLE comprueba los 
datos y las conjeturas (paso 4.1). Con los resultados proporcionados por DiLE, las recomendaciones se 
filtran (paso 4.2) y se clasifican (paso 4.3), como se describe en el componente RM.

Tabla 4.4: Macro-algoritmo de verificación y filtrado de recomendaciones mediante Datos Enlazados.

Entrada: PoQ y los Conocimientos Extraídos

Proceso:
1. CM activa RM para buscar recomendaciones.
2. RM activa ConM.
2.1. ConM convierte el Conocimiento Extraído según la necesidad del DiLE.
3. RM activa QM.
3.1. QM genera las consultas según el PoQ utilizando KB.
4. RM busca recomendaciones ejecutando DiLE.
4.1. RM verifica los datos.
4.2. RM filtra los resultados.
4.3. RM ordena los resultados.

Salida: Recomendaciones



4.2.4 Extracción  de  Contenidos  Relacionados  a  las  Recomendaciones  utilizando 
Datos Enlazados

Objetivo: enriquecer las recomendaciones con contenidos relacionados extraídos a partir de los Datos 
Enlazados.

Descripción general: La tabla 4.5 muestra el proceso de enriquecimiento de las recomendaciones. En 
el  paso 1,  el  CM activa a RM para que busque información relacionada con las recomendaciones 
alcanzadas en el proceso anterior (Paso 1). Para alcanzar este objetivo, el RM activa a QM (Paso 2), 
que se encargará de generar las consultas necesarias para extraer de las fuentes de Datos Enlazados, los 
contenidos relacionados con las recomendaciones (Paso 2.1).  Se realiza utilizando las URIs de las 
recomendaciones alcanzadas del proceso anterior, y la tripleta para el tipo de consulta “Knowledge 
Extraction” (ver componente QM), sustituyendo ?URI_CONCEPT por la URI de cada recomendación 
alcanzada. Cuando se utiliza este URI, se evita la ambigüedad con respecto a las recomendaciones 
alcanzadas  en  procesos  anteriores.  A continuación,  RM  invoca  a  DeLE  utilizando  las  consultas 
generadas por QM (Paso 3). Por último, el contenido relacionado extraído de las fuentes de Datos  
Enlazados se vincula a  las  recomendaciones alcanzadas en el  proceso anterior,  y se entrega como 
resultado final (Paso 4).

Tabla 4.5: Macro-algoritmo de extracción de contenidos relacionados con las recomendaciones 
mediante Datos Enlazados.

Entrada: Recomendaciones

Proceso:
1. CM activa RM para enriquecer las recomendaciones.
2. RM activa QM.
2.1. QM genera consultas de acuerdo con las recomendaciones.
3. RM activa DeLE con las consultas.
4. RM fusiona y devuelve las recomendaciones enriquecidas.

Salida: Recomendaciones Enriquecidas

4.3 Experimentación

Esta sección presenta un caso práctico, que es un resumen extenso del trabajo presentado en la sección 
5 del Anexo 4.A, en el que se detalla el comportamiento de nuestro sistema. Además, se muestra cómo 
se explotarían los recursos de los Datos Enlazados dentro del recomendador. La Figura 4.2 muestra las 
fuentes  de  entrada  para  nuestro  HRS en este  caso  práctico.  Además,  se  lleva  a  cabo la  siguiente  
suposición: los doctores y/o los sensores corporales solo detectan los diferentes síntomas que puede 
presentar un usuario, y dicha información se almacena en un repositorio local de Datos Enlazados, que 
se implementa con OpenLink Virtuoso (Open-Source Edition). Por otro lado, existen datos asociados a 
tipos  de  enfermedades  conocidas,  así  como sus  síntomas,  tratamientos  y  causas,  entre  otros.  Esta 



información se extrae del repositorio de Datos Enlazados externo, llamado Live-DBpedia, que es una 
fuente con datos actualizados, ya que recupera inmediatamente todos los cambios de Wikipedia.

Además, también necesita PoQ como entrada, que es el problema o consulta a resolver. Esta entrada 
será recibida por el CM, que se encarga de controlar todo el proceso llevado a cabo por el HRS. En este  
caso, busca una PoQ que represente una situación de Lógica Dialéctica denominada Discurso Ficticio. 
Para ello, busca determinar si una persona está enferma, de acuerdo con ciertos supuestos. En concreto, 
nuestro sistema debe gestionar los síntomas que pueden o no asociarse a una enfermedad, los conflictos  
entre los síntomas proporcionados por cada doctor o sensor, la falta de información, la inconsistencia  
de los datos, etc. Así, nuestro sistema permite gestionar las diferentes ambigüedades entre las opiniones 
de los doctores y/o la información captada por los sensores. De esta forma, se compone de cuatro 
axiomas que describen el problema, y dos conjeturas que representan las preguntas a resolver (ver  
Figura 3 del Anexo 4.A del artículo [56]):

1.  Enfermo de  D porque  U presenta  alguno  de  los  síntomas  S,  según  el  Doctor  Dr  (ver  axioma 
diseaseDoctor).  Este  axioma  determina  si  alguno  de  los  S  síntomas  es  detectado  por  el  Dr 
(symptomDoctor) en el usuario U. A continuación, se comprueba si el síntoma detectado está asociado 
a la enfermedad D (isSymtom).
2. Enfermo de D según la opinión del Doctor Dr, porque U presenta alguno de los síntomas S (ver  
axioma sickDoctor).  Este axioma determina si  existe una enfermedad D en el usuario U, según la 
opinión del doctor Dr (diseaseDoctor). Este axioma se basa en el axioma 1, porque el doctor Dr detecta  
cualquiera de los S síntomas.
3. Enfermo con D porque U presenta alguno de los síntomas S, según los doctores Dr1 y Dr2 (ver 
axioma diseaseDoctors). Este axioma también se basa en el axioma 1. Realiza una doble comprobación 
de las opiniones de los doctores sobre los síntomas, de forma que determina si la enfermedad D está 
presente en el usuario U basándose en estas opiniones de los doctores Dr1 y Dr2.
4. Enfermo según la opinión de los doctores Dr1 y Dr2, porque U presenta alguno de los síntomas S 
(ver  axioma  sickDoctors).  Este  axioma  se  basa  en  los  axiomas  2  y  3,  y  determina  si  existe  una 
enfermedad D en el usuario U, según las opiniones de los doctores Dr1 y Dr2 (diseaseDoctors).
5. Conjetura i: sickDoctors. El User_A está enfermo según la opinión del doctor_A y del doctor_B.

Figura 4.2: Caso de estudio del HRS.



6. Conjetura ii: diseaseDoctors. El User_A está enfermo de D según la opinión del doctor_A y del  
doctor_B. D pertenece al conjunto de enfermedades disponibles en la base de conocimientos.

Por último, el HRS con las entradas definidas está listo para iniciar la extracción del conocimiento  
necesario para razonar y hacer sus recomendaciones.

Estos procesos se muestran a continuación

4.3.1 Identificación de URIs mediante Datos Enlazados

Este proceso muestra cómo la HRS identifica las ToC presentes en la entrada PoQ, y sus relaciones.  
Para ello, intenta asociar cada ToC a una URI que la represente (véase el macro-algoritmo de la Tabla  
4.3). En este caso, se asume que la base de conocimiento del HRS conoce el ToC del usuario y del  
doctor, y las relaciones entre ellos, usando solo el vocabulario FOAF (ver Tabla 4.6).

Tabla 4.6: Base de conocimientos HRS sobre los ToC.

ToC URI

user foaf:Person

doctor foaf:Person

opinionDoctor foaf:Document

publications foaf:publications

maker foaf:maker

Subject Property Object

user publications opinionDoctor

opinionDoctor maker Doctor

Nota: foaf: http://xmlns.com/foaf/0.1/.

El proceso comienza cuando VM es activada por CM para identificar la ToC (véase el paso 1 en la 
Tabla 4.2). A continuación, VM obtiene los predicados disease, isSymptom y symptomDoctor, y con 
ellos extrae los ToC disease, symptom y doctor (paso 2.1 en la Tabla 4.2). Si no identifica los ToC 
disease y symptoms, y la relación entre ellos (paso 2.2.1 en la Tabla 4.2). VM resuelve este problema 
con la invocación a QM para que prepare consultas para extraer información de los Datos Enlazados a 
través del DeLE (paso 2.2.1.1 en la Tabla 4.2). De esta forma, para cada ToC no identificada, se busca 
una ontología que la describa. La Figura 4.3 muestra una consulta definida por QM (paso 2.2.1.2 en la 
Tabla 4.2), un proceso que se describió previamente en el componente QM, para extraer el URI. Esta  
consulta  busca  una  ontología  para  la  enfermedad  ToC  que  esté  contenida  en  la  fuente  de  Datos 
Enlazados  Live-DBpedia,  obteniendo  como  resultado  el  URI  para  representar  enfermedades: 
“http://dbpedia.org/ontology/disease” (paso 2.2.1.3 en la Tabla 4.2).



Por último, VM utiliza técnicas de Datos Enlazados y la información contenida en las fuentes de los 
Datos Enlazados (paso 2.2.1.4 en la Tabla 4.2), para identificar y relacionar los términos de la entrada 
PoQ (véase la Tabla 4.7).

Tabla 4.7: Nuevos términos o conceptos identificados y relacionados con sus URIs mediante Datos 
Enlazados.

ToC URI

disease dbo:disease

symptom dbo:symptom

isSymptom dbo:symptom

Subject Property Object

disease isSymptom symptom

opinionDoctor isSymptom symptom

Nota: dbo: http://dbpedia.org/ontology/.

Los procesos descritos en esta sección están automatizados en Python. El primer proceso (componente 
VM) extrae los predicados de los axiomas descritos en PoQ. Esos predicados se transforman en ToC,  
que son los términos que se buscarán en la fuente los Datos Enlazados. El segundo proceso utiliza las 
plantillas descritas en QM como “Concept as URI” o “Property related to a Concept as URI”, donde las  
palabras  CONCEPT o  PROPERTY se  sustituyen  por  el  ToC  que  necesita  identificar  su  URI.  A 
continuación, la consulta de búsqueda se ejecuta en el punto final de la fuente LOD (por ejemplo,  
http://live.dbpedia.org/sparql). Este proceso se repite con todos los ToC que necesitan ser identificados, 
y si alguno de estos ToC no está asociado a un URI, entonces el sistema detiene su ejecución e indica el  
problema.

4.3.2 Extracción de conocimientos mediante Datos Enlazados

En este caso, extrae información de las fuentes de Datos Enlazados para enriquecer el conocimiento 
sobre el ToC identificado a partir de la entrada PoQ (ver macro-algoritmo en la Tabla 4.3). Este proceso 
comienza cuando CM activa QM para generar dos consultas (pasos 1.1 y 1.2 en la Tabla 4.3), estas 

Figura 4.3: Consulta para encontrar una ontología para los 
términos o conceptos: disease.



consultas se generan siguiendo el proceso descrito en el componente QM para extraer el conocimiento. 
Por  un  lado,  genera  una  consulta  que  extrae  de  la  fuente  local  de  Datos  Enlazados  los  síntomas 
detectados en el user_A por doctores o sensores (Figura 4.4).

Por otro lado, genera una consulta que extrae una lista de enfermedades con sus síntomas, a partir de la  
fuente Live-Dbpedia de los Datos Enlazados (véase la Figura 4.5).

Por último, CM ejecuta las consultas (pasos 1.3 y 1.4 de la Tabla 4.3).  La Tabla 4.8 muestra una 
pequeña parte de los datos extraídos sobre las enfermedades, con sus síntomas.

Tabla 4.8: Enfermedades con sus síntomas extraídos de Datos Enlazados.

Enfermedad Síntoma

dbpedia_Volvulus dbpedia_Bloating

dbpedia_Volvulus dbpedia_Constipation

dbpedia_Zika_fever dbpedia_Conjunctivitis

dbpedia_Zika_fever dbpedia_Fever

Este proceso se automatiza en Python, para lo cual utiliza la plantilla descrita en QM “Knowledge 
Extraction”, donde sustituye la palabra URI_PROPERTY por la URI del ToC que necesita extraer el  
conocimiento. A continuación, procede a ejecutar la consulta de búsqueda en el endpoint de la fuente 

Figura 4.4: Consulta para extraer los síntomas detectados 
en el user_A.

Figura 4.5: Consulta que genera la lista de enfermedades y sus 
síntomas.



LOD  (por  ejemplo,  http://live.dbpedia.org/sparql).  Este  proceso  se  repite  con  todos  los  ToC  que 
necesitan extraer conocimiento.

4.3.3 Verificación y filtrado de recomendaciones mediante Datos Enlazados

Este proceso verifica las incoherencias y/o ambigüedades de los datos extraídos, y los filtra basándose 
en  los  eventos  dialécticos  encontrados  por  DiLE  (véase  el  macroalgoritmo  del  Cuadro  4.4).  Sin 
embargo, para lograr este objetivo, es necesario activar ConM y QM. ConM (paso 2.1 en la Tabla 4.4) 
transforma los datos extraídos por DeLE (véase la Tabla 4.8) en especificaciones DiLE, basadas en 
axiomas y hechos. Este proceso de transformación se ha explicado en el componente ConM. La Figura 
4.6 muestra parte del resultado de la conversión de las enfermedades y sus síntomas, donde el axioma 
isSymptom_type representa la relación entre enfermedad y síntoma, y el  resto son los hechos que 
representan los datos extraídos.

La Figura 4.7 muestra las conjeturas extraídas del PoQ por el QM (paso 3.1 en la Tabla 4.4). Con estas 
conjeturas, DiLE podrá razonar en el siguiente paso con el modelo y sus datos, permitiendo filtrar las 
recomendaciones.

Ahora, el RM puede invocar al DiLE para verificar y filtrar las recomendaciones (paso 4 de la Tabla 
4.4). En el caso de la conjetura I (véase la figura 4.8), DiLE determina que el user_A está enfermo 
basándose en la opinión del doctor_A y del doctor_B. En el caso de la conjetura II (ver Figura 4.8),  
DiLE comprueba cada enfermedad (variando el valor de D en la conjetura II) que tiene en la base de  
conocimiento,  para  verificar  y  filtrar  las  enfermedades  a  recomendar.  La  Figura  4.8  muestra  la 

Figura 4.6: Información sobre enfermedades y sus síntomas convertida para el motor de Lógica 
Dialéctica.

Figura 4.7: Conjeturas para verificar y filtrar los datos.



verificación de dos enfermedades (dbpedia_Zika_fever y dbpedia_Volvulus) con la conjetura ii. Para 
dbpedia_Zika_fever DiLE determina que es una enfermedad a recomendar (YES), ya que en ambas los 
doctores determinan que existen síntomas asociados a la enfermedad. Para dbpedia_Volvulus DiLE 
determina que no es una enfermedad para recomendar (NO), ya que solo el doctor_B opinó que tiene 
síntomas asociados a esa enfermedad.

Por último, la Tabla 4.9 muestra el resultado obtenido, después de que DiLE filtrara y clasificara las 
enfermedades recomendadas, es decir, los casos que dieron YES con la conjetura II.

Tabla 4.9: Recomendación gracias al motor lógico dialéctico.

Recomendación Ranking

dbpedia_Zika_fever 3

dbpedia_Chikungunya 2

dbpedia_Measles 2

dbpedia_Rheumatic_fever 2

dbpedia_Trichinosis 2

Los procesos descritos en esta sección están automatizados en Python. Son los procesos más complejos 
y constituyen el núcleo del HRS. El primer proceso (componente ConM) transforma las propiedades 
enriquecidas  a  axioma;  en  este  caso  particular,  la  propiedad  isSymptom (ver  PoQ en  el  caso  de 
estudio), que tiene asociados dos conceptos: disease y symptom (conceptos que se obtuvieron usando la 
URI_PROPERTY  en  la  sección  anterior),  quedando  de  la  siguiente  forma:  isSymptom(disease, 
symptom). El segundo proceso ejecuta el razonador JGRM3 con la información contenida en PoQ y las  
propiedades  enriquecidas  transformadas  en  axiomas.  Finalmente,  los  ítems  recomendados  por  el 
razonador se almacenan en una lista y se ordenan por su ranking.

Figura 4.8: Comparación del resultado de dos conjeturas con respecto a los datos.



4.3.4 Extracción  de  contenidos  relacionados  con  las  recomendaciones  mediante 
Datos Enlazados

En este caso, se extrae nueva información de las fuentes de Datos Enlazados relacionada con el URI 
que representa cada enfermedad alcanzada como recomendación (véase el macro-algoritmo en la Tabla 
4.5). Para ello, RM activa QM para generar una consulta que permita extraer dicha información (paso 2 
en la Tabla 4.5). Esta consulta se genera siguiendo el proceso descrito en el componente QM para 
extraer  conocimiento.  La  Figura  4.9  muestra  la  consulta  que  busca  y  extrae  todo  el  contenido 
relacionado con el URI que identifica a la Fiebre Zika, como síntomas, tratamientos, causa, entre otros 
(paso 2.1 en la Tabla 4.5).

RM recoge toda la información extraída con la consulta anterior de Fiebre Zika (pasos 3 y 4 de la Tabla 
4.5), y la asocia al URI de dicha enfermedad (ver Tabla 4.10). Este proceso de extracción y asociación 
se repite con cada una de las enfermedades recomendadas por el HRS.

Figura 4.9: Consulta para extraer datos asociados a Zika_fever.



Tabla 4.10: Extracción de Datos Enlazados sobre la Fiebre Zika.

Enfermedad Propiedad Valor

dbpedia_Zika_fever

Duration Less than a week

Deaths None during the initial infection

Prevention Decreasing mosquito bites, condoms

Diagnosis Testing blood, urine, or saliva for viral RNA or blood for antibodies

Complications During pregnancy can cause microcephaly, Guillain-Barré syndrome

Symptom

Conjunctivitis

Fever

Maculopapular_rash

Arthralgia

Differential 
diagnosis

Leptospirosis

Measles

Malaria

Chikungunya

Dengue

Treatment Supportive_care

Por último, el RM entrega al usuario toda la información recopilada.

Además, este proceso se automatiza en Python a partir de la plantilla descrita en QM «Knowledge 
Extraction», para lo cual sustituye la palabra URI_CONCEPT por la URI del elemento recomendado 
por el sistema. A continuación, procede a ejecutar la consulta de búsqueda en el endpoint de la fuente 
LOD (por  ejemplo,  http://live.dbpedia.org/sparql).  Este  proceso  se  repite  con  todos  los  elementos 
recomendados.

4.3.5 Análisis y Validación del Experimento

En el  experimento,  se muestra cómo el  HRS orquesta a los razonadores y gestores para extraer y  
procesar  el  conocimiento  obtenido  de  los  Datos  Enlazados,  y  responder  así  a  las  necesidades  de 
recomendación considerando los estados de ambigüedad o inconsistencia.  En concreto,  se describe 
cómo se identifican los conceptos asociados a PoQ (ver Sección 4.3.1), que luego se utilizan para  
extraer  información  de  las  fuentes  de  Datos  Enlazados  (ver  Sección  4.3.2).  Teniendo  todo  el 
conocimiento necesario para razonar, se procesa con el razonador de Datos Enlazados que identifica los 
casos ambiguos, y llega a las recomendaciones basadas en las preferencias de cada usuario (ver Sección 
4.3.3). Por último, se extrae de los Datos Enlazados el contenido relacionado con cada recomendación 
alcanzada  (ver  Sección  4.3.4).   En  cada  proceso  se  detalla  el  comportamiento  de  los  algoritmos 
ejecutados por el HRS, para llegar a las recomendaciones. 

En [56] se amplía toda la validación de este experimento,  dónde se analiza el  comportamiento de 
nuestro HRS y se evalúan las recomendaciones conseguidas utilizando la información extraída de los 



Datos Enlazados. En general, se presenta el análisis del proceso en tres pasos: 1. Descripción general  
de los datos extraídos de las fuentes de Datos Enlazados con DeLE. 2. Recomendaciones alcanzadas 
con los eventos dialécticos detectados por DiLE. 3. Evaluación de las recomendaciones alcanzadas 
mediante el mecanismo de razonamiento híbrido. Además, se presenta un análisis comparativo tanto 
cualitativo como cuantitativo.  Dónde todos los recomendadores utilizan la lógica descriptiva como 
mecanismo intrínseco para la explotación de los Datos Enlazados, y con respecto a la resolución de las 
ambigüedades  y/o  incoherencias,  solo  nuestro  trabajo  tiene  esta  capacidad.  En  nuestro  enfoque, 
utilizamos un motor de Lógica Dialéctica basado en la lógica RM3, que permite razonar en los estados 
de ambigüedades o inconsistencias. Otro detalle está relacionado con la extracción y enriquecimiento,  
todos los recomendadores consideran el uso de Datos Enlazados como fuente de conocimiento, por su 
variedad y semántica, ya sea para caracterizar los elementos a recomendar y/o los perfiles de usuario.  
Sin embargo, solo un trabajo y nuestra propuesta aprovechan el paradigma de los Datos Enlazados para 
ofrecer información complementaria extraída de las mismas fuentes de Datos Enlazados, permitiendo 
ampliar la información que se presenta a los usuarios.

4.4 Aplicaciones

El  uso  de  este  tipo  de  arquitectura  se  extiende  a  muchos  contextos  como:  i.  Recomendación  de 
Productos: manejar situaciones donde los consumidores tienen preferencias contradictorias o cuando 
hay información conflictiva sobre los productos. ii. Recomendación de Viajes: cuando hay información 
contradictoria  sobre  los  destinos  o  servicios  turísticos.  iii.  Recomendación  Educativa: manejar 
situaciones donde los estudiantes tienen diferentes estilos de aprendizaje o cuando hay información 
contradictoria sobre los recursos educativos.  iv. Otros: para cualquier contexto donde la información 
sea compleja, contradictoria o ambigua, y donde se necesite un razonamiento sofisticado para llegar a  
recomendaciones precisas y útiles. En este caso particular, nos centramos en la aplicación de la Lógica 
Dialéctica  para  analizar  la  ambigüedad  en  las  competencias profesionales  presentes  en  los  textos 
digitales, como páginas web y redes sociales [58, 59] (Anexo 4.B y 4.C). La dificulta de este problema 
radica en comprender el significado real de una competencia en los perfiles profesionales digitales, ya 
que la interpretación puede variar según el conocimiento y la percepción del editor. Esto da lugar a 
inconsistencias y ambigüedades en la descripción de las competencias, lo que dificulta la identificación 
precisa  de  los  conocimientos  y  habilidades  necesarias  para  el  diseño  de  programas  de  estudio 
universitarios y otros procesos de gestión de competencias.

4.4.1 Fenómenos dialécticos en las competencias (Knowledge Model)

Esta sección presenta un resumen extenso del trabajo presentado en la sección Knowledge Model del 
Anexo 4.B, dónde se muestran diferentes modelos dialécticos que contiene hipótesis que corresponden 
a los cinco fenómenos dialécticos [58]: vaguedad, declaraciones contingentes sobre el futuro, discurso 
ficticio, fallo de una presuposición y razonamiento contrafáctico. Aplicamos las descripciones de cada 
axioma sobre los términos de competencia, conocimiento y habilidad, pertenecientes a documentos de 
una colección de perfiles analizados por expertos [60]. Estos términos pertenecientes a la población 
ontológica del modelo Competencias Ontológicas, siguiendo un método desarrollado en [61], con el 



apoyo  de  bases  de  conocimiento  de  definiciones  de  conocimiento  y  habilidades:  DISCO II  (para 
conocimiento), BLOOM (para habilidad) [61].

En las secciones siguientes, para cada fenómeno dialéctico, analizamos primero los axiomas utilizando 
ejemplos de términos. Luego, presentamos la descripción en RM3, estructurada en  tres componentes: 
axiomas, que corresponden a las reglas dialécticas que los definen; hechos, que son las entradas al 
modelo  a  partir  de  las  instancias  extraídas  de  los  perfiles  digitales  académicos  o  profesionales;  y  
conjeturas,  que  se  activan  durante  el  razonamiento  para  realizar  la  interpretación  de  los  perfiles  
digitales académicos o profesionales [10].

4.4.1.1Vaguedad

La vaguedad corresponde a una falta de claridad, precisión o exactitud en el lenguaje natural. Los  
patrones lingüísticos de las frases nominales y verbales que identifican las competencias de habilidades  
y  conocimientos  pueden  ser  los  mismos  (homónimos).  La  Tabla  1  muestra  tres  ejemplos  de  la 
ambivalencia de estos patrones, que se consideran frases nominales de la forma NC-SP-NC y NC-SP-
NC-AQ,  que  representan  el  componente  de  conocimiento.  Sin  embargo,  estos  términos  pueden 
interpretarse como una habilidad (Java expert y Hardware knowledge) o una competencia (Software 
development) [61].  De este modo, la estructura lingüística de las frases nominales es ambivalente, 
según la interpretación que el redactor haga de conocimiento y habilidad.

Tabla 4.11: Patrones lingüísticos de vaguedad.

Término Patrón Lingüístico Interpretación según el patrón Interpretación del editor

Hardware knowledge NC-SP-NC Conocimiento Habilidad

Java expert NC-SP-NC Conocimiento Habilidad

Software development NC-SP-NC Conocimiento Competencia

En particular, proponemos el siguiente axioma para los problemas de vaguedad explicados en la Tabla 
4.11:

Si (el término T tiene un patrón P como conocimiento) y (P se interpreta como Habilidad (C1) o 
Competencia (C2)), entonces (T tiene un patrón ambivalente).

La Tabla 4.12 muestra el axioma en formato RM3 (Lógica Dialéctica). Como se puede observar, el 
axioma “hasAmbivalentPattern” establece la relación entre los patrones lingüísticos de los términos, 
dependiendo de si T (término) tiene un patrón P que representa conocimiento, pero que, cuando se 
interpreta es diferente (como habilidad (C1) o competencia (C2)), por lo que existe una ambivalencia.  
Así, aunque el patrón lingüístico del término indica una frase nominal que corresponde a conocimiento, 
el término se interpreta como habilidad o competencia.



Tabla 4.12: Axiomas de vaguedad.

Problema: Si (el término T tiene un patrón P como conocimiento) y (P se interpreta como Habilidad (C1) o 
Competencia (C2)), entonces (T tiene un patrón ambivalente).

Axiomas fof(hasAmbivalentPattern,axiom,(
    ! [T,P,C1,C2] : (
        (hasPattern(T, P) & isInterpretedAs(T, C1) & isInterpretedAs(P, C2) &
        isDifferent(C1,P) & isDifferent(C2,P))
        => hasAmbivalentPattern(T, P)
    )
)).

Hechos fof(hasPattern1, axiom, hasPattern(hardware_knowledge, nc_sp_nc) ).
fof(isInterpretedAs1, axiom, isInterpretedAs (hardware_knowledge, competence) ).
fof(isInterpretedAs2, axiom, isInterpretedAs(hardware_knowledge, skill) ).
fof(isPattern1, axiom, isPattern(nc_sp_nc, knowledge) ).
fof(isDifferent1, axiom, isDifferent(knowledge, competence) ).
fof(isDifferent2, axiom, isDifferent(knowledge, skill) ).

Conjeturas If "SZS status Theorem for FOF" term has ambivalent pattern
fof(conjeture1,conjecture, (hasAmbivalentPattern(hardware_knowledge, nc_sp_nc))).

El  modelo  parte  de  la  propuesta  de  hechos  como  fof(hasPattern1,  axiom,  hasPattern 
(hardware_knowledge,,  nc_sp_nc)),  sobre  la  que  los  axiomas  realizan  las  interpretaciones,  desde 
axiomas básicos como fof(isInterpretedAs2, axiom, isInterpretedAs(hardware_knowledge, skill)), hasta 
llegar  a  la  conjetura,  que  es  un  axioma  que  interpreta  los  hechos  a  partir  del  axioma  básico 
fof(conjeture1,conjecture,(hasAmbivalentPattern(hardware_knowledge,nc_sp_nc)).

4.4.1.2Declaraciones Contingentes sobre el Futuro

Las declaraciones analizan acontecimientos futuros, acciones, etc. Este fenómeno se produce en frases 
verbales que generalmente describen competencias y habilidades. En este caso, la frase está formada 
por varios verbos que, considerando sus sinónimos, se encuentran en diferentes niveles de habilidad y 
procesos  cognitivos,  que  no  establecen  qué  habilidad  desarrollará  la  competencia  en  breve.  Por 
ejemplo, según el tesauro Bloom descrito en [61], para la competencia de la Tabla 4.13, “Design and 
manage systems”, la palabra “design” pertenece al nivel cognitivo 3 y la palabra “manage” al nivel 
cognitivo 5, ambas dentro de procesos cognitivos diferentes (inferior y superior, respectivamente). Por 
lo tanto, si finalmente se necesita esta competencia, resulta ambiguo establecer los mecanismos de  
enseñanza para conseguirla. Incluso en el proceso de evaluación del aprendizaje no está claro a qué 
nivel y proceso cognitivo debe considerarse la competencia.

Tabla 4.13: Casos de declaraciones contingentes sobre el futuro en términos de perfiles debido a la 
contradicción de los niveles cognitivos.

Frase verbal Nivel cognitivo 1 Nivel cognitivo 2 Proceso cognitivo 1 Proceso cognitivo 2

Design and manage systems Design: 3 Manage: 5 Inferior Superior

Operate and maintain computer centers Operate: 3 Maintain: 6 Inferior Superior



Para  formalizar  esta  contradicción,  proponemos  los  siguientes  axiomas  para  los  problemas  de 
enunciados contingentes de los ejemplos de la Tabla 4.13.

 Problema 1: Si (el término Th es sinónimo del término del tesauro Tb) y (Th y Tb pertenecen a 
niveles cognitivos diferentes Nc1 y Nc2), entonces (Th pertenece a varios niveles cognitivos).

 Problema 2: Si (el término Th1 es sinónimo del término Th2) y (Th1 y Th2 pertenecen a niveles 
cognitivos diferentes Nc1 y Nc2), entonces (Th1 y Th2 tienen varios niveles cognitivos).

 Problema 3: Si (el término T es sinónimo de los términos Th1 y Th2) y (Th1 y Th2 pertenecen a 
niveles cognitivos diferentes Nc1 y Nc2), entonces (T tiene varios niveles cognitivos).

En la Tabla 4.14, presentamos los modelos dialécticos de los axiomas partiendo del hecho de establecer  
que  sus  niveles  cognitivos  son  diferentes  usando  fof(isDifferent2,  axiom,  isDifferent  (synthesis, 
application)).  A  continuación,  se  establece  la  relación  de  sinonimia  entre  los  términos  con 
fof(isSynonymous2, axiom, isSynonymous (design, plan)), y de pertenencia de cada término a un nivel 
cognitivo con fof(belongsCognitiveLevel1, axiom, belongsCognitiveLevel (design, synthesis)). De este 
modo, la base de conocimiento para la interpretación se construye para la conjetura  fof(conjecture, 
conjecture,(termsBelongSeveralCognitiveLevels  (design,  plan))),  que  tiene  un  valor  de  verdadero 
porque “design” y “plan” son sinónimos y pertenecen a diferentes niveles cognitivos (“synthesis” y 
“application”, respectivamente).



Tabla 4.14: Axiomas de declaraciones contingentes sobre el futuro.

Problema: 1. Si Th es sinónimo del término del tesauro Tb y Th, y Tb tiene diferentes niveles cognitivos Nc1 y Nc2, 
entonces Th pertenece a varios niveles cognitivos.

2. Si el verbo relacionado Th1 es sinónimo del verbo correspondiente Th2 y Th1, y Th2 pertenecen a 
niveles cognitivos diferentes Nc1 y Nc2, entonces Th1 y Th2 tienen varios niveles cognitivos.

3. Si T es sinónimo de los verbos relacionados Th1 y Th2, y Th1 y Th2 pertenecen a diferentes niveles 
cognitivos Nc1 y Nc2, entonces T tiene varios niveles cognitivos.

Axiomas fof(termBelongsSeveralCognitiveLevels, axiom,(
    ! [Th,Tb,Nc1,Nc2] : (
        (isSynonymous(Th,Tb) & belongsCognitiveLevel(Th,Nc1)&
        belongsCognitiveLevel(Tb,Nc2) & isDifferent(Nc1,Nc2) )
        => termBelongsSeveralCognitiveLevels(Th)
    )
)).
fof(termsRelatedVerbBelongsSeveralCognitiveLevels,axiom,(
    ! [Th1,Th2,Nc1,Nc2] : (
        (belongsCognitiveLevel (Th1,Nc1)&
        belongsCognitiveLevel(Th2,Nc2) & isDifferent(Nc1,Nc2) )
        => termsRelatedVerbBelongsSeveralCognitiveLevels(Th1, Th2)
    )
)).
fof(termsBelongsSeveralCognitiveLevels, axiom,(
    ! [Th1,Th2] : (
        (termsRelatedVerbBelongSeveralCognitiveLevels(Th1, Th2) |
        termBelongsSeveralCognitiveLevels (Th1) |
        termBelongsSeveralCognitiveLevels (Th2))
        => termsBelongSeveralCognitiveLevels (Th1,Th2)
    )
)).

Hechos fof(isDifferent1, axiom, isDifferent(synthesis, knowledge) ).
fof(isDifferent2, axiom, isDifferent(synthesis, aplication) ).
fof(isDifferent3, axiom, isDifferent(aplication, synthesis) ).
fof(isSynonymous1, axiom, isSynonymous(design, sketch) ).
fof(isSynonymous2, axiom, isSynonymous(design, plan) ).
fof(isSynonymous3, axiom, isSynonymous(plan, sketch) ).
fof(belongsCognitiveLevel1, axiom, belongsCognitiveLevel(design, synthesis) ).
fof(belongsCognitiveLevel2, axiom, belongsCognitiveLevel(sketch,synthesis) ).
fof(belongsCognitiveLevel22, axiom, belongsCognitiveLevel(sketch,knowledge) ).
fof(belongsCognitiveLevel3, axiom, belongsCognitiveLevel(plan, aplication) ).

Conjeturas If "SZS status Theorem for FOF" terms belongs several cognitive levels
fof(conjetura,conjecture, (termsBelongSeveralCognitiveLevels(design, plan) )).
fof(conjetura,conjecture, (termBelongsSeveralCognitiveLevels (design) )).

4.4.1.3Discurso Ficticio

Según las creencias de las personas, los enunciados implican la toma de decisiones relacionadas con 
determinados supuestos reales o imaginarios. En el caso de las competencias y sus componentes de 
conocimientos y habilidades, es habitual que el editor de perfiles coloque estos tres componentes en 
secciones de un documento,  como la descripción,  el  campo ocupacional,  y no precisamente como 



competencias, conocimientos o habilidades. La tabla 4.15 muestra algunos casos fundados en [61], 
donde  el  editor  de  perfiles  colocó  la  competencia  “Plan  and  manage  computer  projects”  como 
antecedente.  Un  caso  similar  se  refiere  al  tema  de  conocimiento  “Industrial  process  control”, 
establecido en la sección de competencias. En consecuencia, depende mucho de la interpretación y los  
conocimientos  del  redactor  reconocer  una  competencia  o  sus  componentes  de  conocimientos  y 
habilidades, lo que puede generar una ficción en la redacción del perfil académico o profesional.

Tabla 4.15: Casos de discurso ficticio en términos de perfiles por su significado y ubicación.

Término Componente Sección de documentos

Industrial process control Conocimiento Competencias

Development of computer applications Conocimiento Perfil de carrera

Plan and manage computer projects Conocimiento Antecedente

En particular, proponemos el siguiente axioma para este problema, de acuerdo con los ejemplos del 
cuadro 4.15. En este caso, la lógica de la descripción no consigue representar la contradicción de los 
hechos; por ejemplo, el término “industrial process control” es un componente del conocimiento, pero 
se sitúa como una competencia.

Si (el término T se encuentra en la sección del documento C1) y (T es un componente C2) y (C1 es 
diferente de C2), entonces (T es una frase ficticia).

En la Tabla 4.16, presentamos el axioma “isFictitiousPhrase” partiendo del hecho de que el término es 
un  componente  de  “knowledge”  (conocimiento)  con  fof(isComponent1,  axiom, 
isComponent(industrial_process_control, knowledge)), que esté ubicado en la sección “competencies” 
(competencia)  del  documento  con  fof(isLocated1,  axiom,  isLocated  (industrial_process_control, 
competencies)),  siendo  diferentes  ”knowledge“  y  ”competencies”  con  fof(isDifferent2,  axiom, 
isDifferent(knowledge, competencies)). Con base en los hechos, la conjetura fof(conjecture, conjecture, 
(isFictitiousPhrase(industrial_process_control, competencies))) tiene un valor de verdadero, porque al 
mismo tiempo “industrial_process_control” es un componente de “knowledge” y se identifica como 
una “competence”.



Tabla 4.16: Axiomas de los términos ficticios.

Problema: Si el término T se encuentra en la sección del documento C1 y T es un componente C2, y C1 es diferente 
de C2, entonces T es una frase ficticia.

Axiomas fof(isFictitiousPhrase, axiom,(
    ! [T,P,C1,C2] : (
        (isLocated(T, C1) & isComponent(T, C2) & isDifferent(C1,C2) )
        => isFictitiousPhrase(T)
    )
)).

Hechos fof(isComponent1, axiom, isComponent(industrial_processes_control, knowledge) ).
fof(isComponent2, axiom, isComponent(industrial_process_control, competencies) ).
fof(isLocated1, axiom, isLocated(industrial_process_control, competencies) ).
fof(isDifferent1, axiom, isDifferent(competencies, knowledge) ).
fof(isDifferent2, axiom, isDifferent(knowledge, competencies) ).

Conjeturas If "SZS status Theorem for FOF" is Fictitious Phrase
fof(conjeture, conjecture, (isFictitiousPhrase(industrial_process_control, competencies) )).

4.4.1.4Falla de una Presuposición

La  afirmación  implica  la  presuposición  de  algo  que  en  realidad  no  es  cierto,  aplicada  a  las 
competencias cuando el término se utiliza mal en una sección del perfil, de tal manera que el término  
presuposición es erróneo. Según la interpretación del  redactor,  es de un tipo,  pero es de otro.  Por  
ejemplo, en la Tabla 4.17, el término “Develop computer applications” se presupone como un “Perfil 
de carrera”, cuando en realidad se interpreta como una “Habilidad” [61]. Del mismo modo, “Hardware 
control” se supone un “Antecedente”,  siendo un “Conocimiento”,  y así  para los demás casos.  Del 
mismo  modo,  para  cada  término,  la  suposición  del  editor  de  perfiles  es  errónea  en  cuanto  a  la 
interpretación del experto.

Tabla 4.17: Casos de fallo de presuposición debido a la contradicción de la interpretación de los 
expertos de los términos de los perfiles.

Término Presuposición Interpretación del experto (patrón)

Develop computer applications Perfil de carrera Habilidad

Develop computer programs Competencias Habilidad

Plan and manage computer projects Antecedente Habilidad

Hardware Control Antecedente Conocimiento

Java knowledge Experiencia Habilidad

Para formalizar  esta  contradicción,  proponemos el  siguiente axioma para este  problema, según los 
ejemplos de la Tabla 4.17.



Si (el término T se encuentra en la sección del documento C1) y (T tiene un patrón C2) y (C1 es 
diferente de C2), entonces (T es un fallo de presuposición).

En la Tabla 4. 18, presentamos el axioma en Lógica Dialéctica “isPresuppositionFailure” partiendo del 
hecho  de  que  el  término  tiene  un  patrón  de  conocimiento  “nc_aq”  (fof(hasPattern1,  axiom, 
hasPattern( java_knowledge, nc_aq))), que se encuentra en la sección “experiencia” del documento 
(fof(isLocatedIn  1,  axiom,  isLocatedIn(  java_knowledge,  experience))),  siendo  diferentes 
“conocimiento” y “experiencia” (fof(isDifferent1, axiom, isDifferent(experience, knowledge))). A partir 
de los hechos, la conjetura fof(conjeture, conjeture, (isPresuppositionFailure ( java_knowledge) )) tiene 
un valor de verdadero porque al mismo tiempo “java_knowledge” tiene un patrón de “conocimiento” 
que se identifica como una “experiencia”.

Tabla 4.18: Axiomas de fallo de presuposición.

Problema: Si el término T se encuentra en la sección del documento C1, T tiene un patrón C2, y C1 es diferente de C2, 
entonces T es un fallo de presuposición.

Axiomas fof(isPresuppositionFailure, axiom,(
    ! [T,P,C1,C2] : (
        (hasPattern(T, P) & isLocatedIn(T, C1) & isPattern(P, C2) & isDifferent(C1,C2) )
        => isPresuppositionFailure (T)
    )
)).

Hechos fof(hasPattern 1, axiom, hasPattern (java_knowledge, nc_aq) ).
fof(isLocatedIn 1, axiom, isLocatedIn(java_knowledge, experience) ).
fof(isPattern 1, axiom, isPattern (nc_aq, knowledge) ).
fof(isDifferent 1, axiom, isDifferent(experience, knowledge) ).

Conjeturas If "SZS status Theorem for FOF" term is Presupposition Failure
fof(conjetura,conjecture, (isPresuppositionFailure (java_knowledge) )).

4.4.1.5Razonamiento Contrafáctico

Considerar el significado de los enunciados causales puede explicarse en términos de condicionales 
contrafácticos de la forma «Si no hubiera ocurrido A, entonces no habría ocurrido C». En el contexto 
de las competencias, el razonamiento contrafáctico se aplica en las hipótesis realizadas al alinear los  
términos de las  competencias con los términos de los tesauros según medidas de similitud léxica, 
estableciendo  umbrales  para  determinar  las  similitudes.  Propondremos  la  siguiente  hipótesis:  “Un 
término y un tema de un tesauro de competencias pertenecen al  mismo dominio de conocimiento 
cuando la medida de similitud entre ellos supera el límite de 0,45” [61]. Como se muestra en la Tabla  
4.19, para los tres casos propuestos, dos pertenecen al mismo dominio porque la medida de similitud 
supera el límite de 0,45. Pero, si cambiamos el valor límite a 0,51, vemos que solo el caso “Software”  
frente a “Programming” cumple la hipótesis. En general, el valor umbral es subjetivo, lo que provoca 
errores  y  ambivalencias  a  la  hora  de  interpretar  la  pertenencia  de  un  término  a  un  dominio  de 
conocimiento.



Tabla 4.19: Casos de razonamiento contrafáctico debido a la pertenencia de un término a un dominio 
según una medida de similitud.

Término Tópico Dominio Similitud

Software

Software debugging Programming 0.53

Software installation IT installation and configuration 0.50

Software Application Development Software development 0.41

De acuerdo con los ejemplos de la Tabla 4.19, proponemos el siguiente axioma para este problema,

Si (el término T tiene una medida de similitud Ms con un tema Tr mayor que el umbral Us), entonces 
(pertenece al tema raíz del tesauro TD).

La  tabla  4.20  muestra  los  axiomas  dialécticos  para  esta  contradicción,  empezando por  los  hechos 
fof(relationMeasure1,  axiom,  relationMeasure  (software,  programming,  ms0_48,  td1))  y 
fof(relationMeasure3,  axiom, relationMeasure (software,  software_debugging,  ms0_52,  td12) ),  que 
define que el término “software” tiene una medida de similitud de 0,48 con “programming” y de 0,52 
con  “software_debugging”.  Otro  hecho  es  que  las  medidas  de  similitud  de  0,48  y  0,52  son  más 
significativas que el umbral (0,45), y también que los hechos “td1” y “td12” son diferentes. De este 
modo, la base de conocimientos para la interpretación se construye según el axioma fof(conjecture, 
conjecture,  (termBelongsTopic  (software,  td12))),  que  es  el  axioma  base  para  la  conjetura 
fof(conjecture,  conjecture,  (termBelongsSeveralTopics  (software))).  Considerando  el  término 
“software”,  el  resultado  es  verdadero  porque  “software”  pertenece  a  los  temas  “programación”  y 
“depuración de software” pertenece al tema raíz del tesauro TD.



Tabla 4.20: Axiomas de razonamiento contrafáctico.

Problema: Si el término T tiene una medida de similitud Ms con un tema Tr mayor que el umbral Us, entonces 
pertenece al tema raíz del tesauro TD.

Axiomas fof(termBelongsTopic,axiom,(
    ! [T,Tr,Ms,Us,TD] : (
        (relationMeasure(T, Tr, Ms, TD) & isGreaterThan(Ms, Us) )
        => termBelongsTopic(T, TD)
    )
)).
fof(termBelongsSeveralTopics,axiom,(
    ! [T,TD1,TD2] : (
        (termBelongsTopic (T, TD1) & termBelongsTopic (T, TD2) & isDifferent(TD1, TD2))
        => termBelongsSeveralTopics (T)
    )
)).

Hechos fof(relationMeasure1, axiom, relationMeasure (software, programming, ms0_48, td1) ).
fof(relationMeasure2, axiom, relationMeasure (software, software_installation, ms0_30, td11) ).
fof(relationMeasure 3, axiom, relationMeasure (software, software_debugging, ms0_52, td12) ).
fof(threshold, axiom, threshold = ms0_45 ).
fof(isGreaterThan1, axiom, isGreaterThan(ms0_48 , threshold) ).
fof(isGreaterThan2, axiom, isGreaterThan (ms0_52 , threshold) ).
fof(isDifferent 1, axiom, isDifferent (td1 , td12) ).

Conjeturas If "SZS status Theorem for FOF term Belongs Topic
fof(conjetura,conjecture, (termBelongsTopic (software, td1) )).
fof(conjetura,conjecture, (termBelongsTopic (software, td12) )).
If "SZS status Theorem for FOF" term Belongs Several Topics
fof(conjetura,conjecture, (termBelongsSeveralTopics(software) )).

4.4.2 Otros Modelos de Conocimiento

Esta sección es un resumen extenso del trabajo presentado en la sección 3 del Anexo 4.C, dónde se  
presentan dos modelo de conocimiento basado en axiomas dialécticos centrados en el razonamiento 
contrafáctico y fallo de la presuposición [59]. Para ello, se analizan los casos de ambigüedad dialéctica  
aplicados a términos de conocimiento y habilidad usando los dos tesauros presentados anteriormente: 
DISCO II (para conocimiento) y BLOOM (para habilidad) [61], con el fin de identificar la ambigüedad 
semántica presente para el alineamiento entre términos de competencias y los tópicos en los tesauros.

En el primer caso, abordamos la contradicción que existe en cuanto a la pertenencia de un término de 
conocimiento a un tópico de un tesauro, tomando a DISCO II como tesauro de referencia [60]. Los 
axiomas se definen en torno al siguiente problema: 

Si el término T tiene una medida de similitud Ms con un tópico Tr mayor al umbral Us, entonces 
pertenece al tópico raíz del tesauro TD.

En la Tabla 4.21 se observan los 4 axiomas que lo describen, los cuales están relacionados entre sí, de 
tal forma que para que se cumpla un axioma, deben cumplirse los axiomas relacionados. Por ejemplo, 
el  axioma  “terminoPerteneceTopicos”  requiere  del  cumplimiento  de  los  axiomas 



“términoPerteneceTopico”, “terminoPerteneceVariosTopicos” y “terminoPerteneceAlgunTopico”. Con 
estas relaciones, se describe que un término T pertenece a varios tópicos del tesauro si la medida de 
similitud es mayor que el umbral establecido.

Tabla 4.21: Axiomas caso 1.

Problema: Si el término T tiene una medida de similitud Ms contra un tópico Tr mayor al umbral Us entonces 
pertenece al tópico raíz del tesauro.

Axiomas fof(terminoPerteneceTopico,axiom,(
    ! [T,Tr,Ms,Us] : (
        ( medidaRelacion(T, Tr, Ms) & esMayor(Ms, Us) )
        => terminoPerteneceTopico(T, Tr) ))).
fof(terminoPerteneceAlgunTopico,axiom,(
    ! [T,Tr] : (
        ( terminoPerteneceTopico(T , Tr) )
        => terminoPerteneceAlgunTopico(T) ))).
fof(terminoPerteneceTopicos,axiom,(
    ! [T,Tr1,Tr2] : (
        ( terminoPerteneceTopico(T , Tr1) & terminoPerteneceTopico(T , Tr2) )
        => terminoPerteneceTopicos(T,Tr1,Tr2) ))).
fof(terminoPerteneceVariosTopicos,axiom,(
    ! [T,Tr1,Tr2] : (
        ( terminoPerteneceTopicos(T,Tr1,Tr2) )
        => terminoPerteneceVariosTopicos(T) ))).

Hechos fof(medidaRelacion1, axiom, medidaRelacion(software, programacion, s0_48) ).
fof(medidaRelacion2, axiom, medidaRelacion(software, depuracion_de_software,
s0_52) ).
fof(medidaRelacion3, axiom, medidaRelacion(software, instalacion_de_software,
s0_30) ).
fof(umbral, axiom, umbral = s0_45 ).
fof(esMayor1, axiom, esMayor(s0_48 , umbral) ).
fof(esMayor2, axiom, esMayor(s0_52 , umbral) ).
fof(esMayor3, axiom, esMayor(s0_30, umbral) ).

Conjeturas Si “SZS status Theorem for FOF” término pertenece al tópico
fof(conjetura1,conjecture, ( terminoPerteneceTopico(software,programacion) )).

Si “SZS status Theorem for FOF” término pertenece a algún tópico
fof(conjetura2,conjecture, ( terminoPerteneceAlgunTopico(software) )).

Si “SZS status Theorem for FOF” término pertenece a los dos tópicos
fof(conjetura3,conjecture, ( terminoPerteneceTopicos(software,programacion,depuracion_de_software) )).

Si “SZS status Theorem for FOF” término pertenece a varios tópicos
fof(conjetura4,conjecture, ( terminoPerteneceVariosTopicos(software) )).

Para el segundo caso, consideramos la ambigüedad que existe entre términos de habilidades cuando 
pertenecen a dos niveles cognitivos distintos, esto se da debido los sinónimos que tiene un término, y a 
los niveles cognitivos que pertenecen estos sinónimos. El tesauro con el cual realizamos este análisis es  
con el tesauro BLOOM que se explica en [61], el cual presenta estas contradicciones. Este ejemplo lo 
podemos ver en detalles en la sección 3.2 del Anexo 4.C.



4.4.3 Análisis General

La Lógica Dialéctica ofrece una herramienta poderosa para analizar la ambigüedad inherente a las  
descripciones de competencias profesionales en textos digitales, ya que la lógica tradicional, con su 
enfoque binario de Verdadero o Falso, resulta insuficiente para modelar las múltiples interpretaciones 
válidas que pueden surgir del lenguaje natural en este contexto.  Para superar esta limitación, definir 
modelos  basados  en  axiomas  dialécticos  permiten  identificar  y  analizar  contradicciones  y 
ambivalencias en la descripción de competencias, abarcando fenómenos como la vaguedad, el fallo de 
presuposición, el razonamiento contrafáctico, el discurso ficticio y las declaraciones contingentes sobre 
el  futuro.   Para  evaluar  la  efectividad de los  modelos presentados,  se  utilizaron métricas  como la  
Completitud, la Robustez y la Entropía que pueden ser revisados en [58, 59]. Los modelos propuestos 
buscan mejorar la precisión en la identificación de conocimientos y habilidades, con aplicaciones en la 
educación, la gestión de recursos humanos y el desarrollo de sistemas de aprendizaje inteligentes.



5 Arquitectura de Meta-Aprendizaje para Modelos de 
Aprendizaje Automático basado en Datos Enlazados

En  este  capítulo  se  presenta  la  construcción  de  una  arquitectura  de  Meta-Aprendizaje  para  la  
generación de modelos de Aprendizaje Automático basado en el paradigma de los Datos Enlazados. 
Esta  arquitectura  lleva  a  cabo  las  diferentes  tareas  de  los  expertos  en  datos  o  científicos  para  la 
generación de modelos de Aprendizaje Automático, quienes se encargan de tareas como la extracción 
de información de las fuentes de datos, el procesamiento de datos, la selección de los algoritmos de  
Aprendizaje Automático, el ajuste de los hiperparámetros de los algoritmos de Aprendizaje Automático, 
entre otras. La estructura del capítulo es la siguiente: La sección 5.1, en consonancia con la sección II  
del artículo presentado en el Anexo 5.A, describe el diseño de la arquitectura de Meta-Aprendizaje 
basado en Datos Enlazados para la generación automática de modelos de conocimientos. La sección  
5.2, se basa en la Sección 4 del artículo presentado en el Anexo 5.B, y presenta la ampliación de la 
arquitectura  presentada  en  la  sección  5.1.,  introduciendo  un  nuevo  nivel  de  sofisticación  en  la 
generación de modelos de conocimiento y la integración de nuevas capacidades. Todo esto, gracias a su 
Meta-Algoritmo  autónomo  que  permite  automatizar  la  construcción  de  modelos  de  Aprendizaje 
Automático,  invocando  los  diferentes  módulos  especializados  como  los  de  aprendizaje  por 
transferencia  (Transferencia  de  Modelos,  de  Parámetros  y  de  Datos)  y  de  Generación  de  Datos 
Sintéticos. La sección 5.2.1 describe la arquitectura de generación de características usando modelos de 
Aprendizaje Automáticos, basándose en la sección III del artículo presentado en el Anexo 5.C. La 
sección 5.2.2  presenta  la  arquitectura  de  generación de  datos  artificiales  usando Datos  Enlazados,  
basándose en la sección II del artículo presentado en el Anexo 5.D y en la sección III del artículo  
presentado  en  el  Anexo  5.E.  La  sección  3  presenta  varios  casos  de  estudio.  Concretamente,  la 
subsección  5.3.1  ilustra  un  caso  de  estudio  de  la  arquitectura  de  Meta-Aprendizaje,  basado  en  la 
sección  5  del  artículo  del  Anexo  5.B.  La  subsección  5.3.2  presenta  un  caso  de  estudio  sobre  la 
generación de características, fundamentado en la sección IV del artículo del Anexo 5.C. A su vez, la  
subsección 5.3.3 ilustra un caso de estudio centrado en la generación de datos artificiales, tomando 
como base la sección III del artículo del Anexo 5.D. Finalmente, la sección 5.4 explora el uso de este  
tipo de arquitectura en el contexto de las cadenas de producción agroindustrial, basada en la sección 3 
del artículo presentado en el Anexo 5.F.

5.1 Arquitectura

Esta sección presenta un resumen extenso del trabajo presentado en [9], cuyos detalles se encuentran en 
la sección II del artículo presentado en el Anexo 5.A. En dicho trabajo, se propone una arquitectura 
conceptual que sigue las tres fases propuestas por la metodología MIDANO [53, 62], que son: en la  
fase 1, se identifican las fuentes para la extracción de conocimiento. En la fase 2, se preparan los datos,  
es decir, se procesan los datos disponibles en las fuentes de conocimiento mediante tareas de ingeniería  
de características, entre otras. Por último, en la fase 3, se implementan diferentes tareas para generar los 
modelos de conocimiento requeridos, como la configuración de técnicas de Aprendizaje Automático y 
la construcción e integración de modelos de Aprendizaje Automático. Esta arquitectura se compone de 
las siguientes capas (ver Figura 5.1):



 KSL: Esta capa almacena y gestiona la  información sobre los elementos necesarios en los 
procesos de Aprendizaje Automático, como el conjunto de datos a utilizar, las características 
(conocimiento  extraído  del  conjunto  de  datos)  y  los  modelos  de  conocimiento  a  construir 
(hiperparámetros,  técnicas de aprendizaje,  métodos de validación,  entre otros).  Se compone 
principalmente  de  fuentes  de  Datos  Enlazados,  que  proporcionan  datos  con  información 
semántica. Esta capa se compone del módulo llamado Linked Data Module (LDM).

 MKL: Esta  capa  gestiona  todo  el  conocimiento  relacionado  con  los  procesos,  tareas  y 
estrategias para la utilización de técnicas de Aprendizaje Automático para construir modelos de 
conocimiento.  En  concreto,  describe  todos  los  elementos  que  componen  el  Aprendizaje 
Automático,  planifica  y  organiza  los  procesos  a  ejecutar,  analiza  y  evalúa  las  estrategias 
utilizadas en los diferentes procesos y/o tareas, y descubre nuevo conocimiento basado en la 
experimentación,  entre  otros.  Esta  capa está  compuesta  por  los  módulos  de  Meta-Learning 
(MLM), Meta-Feature (MFM), Meta-DataSet (MDSM) y Meta-Model (MMM).

 KML: Esta capa ejecuta y registra todos los procesos de Aprendizaje Automático. En concreto,  
se procesan y enriquecen los conjuntos de datos; se aplica la ingeniería de características; se 
seleccionan los algoritmos de entrenamiento, los cuales se utilizan para construir modelos de 
conocimiento, que se evalúan posteriormente. Esta capa se compone de los módulos de Feature 
Engineering (FEM), Tuning (TM), Model Building (MBM) y Model Integration (MIntM).

 

5.1.1 Módulos de la arquitectura

En esta  sección se  ofrece  una descripción general  de  los  módulos  que componen las  capas  de  la 
arquitectura de Meta-Aprendizaje. A continuación, se presenta el módulo KSL:

 LDM: Este módulo utiliza el  paradigma de Datos Enlazados para gestionar la información 
generada por el MKL y el KML, ofreciendo mecanismos de consulta (leer, crear, actualizar o 
borrar triplas) a todos los módulos de la arquitectura. 

Se describen a continuación los módulos de MKL:

Figura 5.1: Arquitectura conceptual del Meta-Aprendizaje.



 MLM: Este módulo es el encargado de tomar todas las decisiones generales de la arquitectura, 
es decir, es el responsable de invocar al resto de módulos especializados en cada tarea. También 
es responsable de recibir y caracterizar el problema a resolver, y de identificar la fuente de datos 
que se utilizarán para resolverlo. 

 MFM: Este módulo se encarga de gestionar el conocimiento sobre las propiedades generales de 
las  características  de  los  conjuntos  de  datos.  En  particular,  este  módulo  especifica  la  
información  que  debe  generarse  a  partir  de  los  conjuntos  de  datos,  como  las  medidas 
estadísticas estándar, la correlación entre los datos, entre muchas otras.

 MDSM: Este módulo se encarga de gestionar el conocimiento específico sobre los datos que se 
utilizan para generar un modelo Aprendizaje Automático. Para ello, mantiene un registro que 
describe los conjuntos de datos y sus metadatos, como el número de instancias, atributos, clases, 
autor, fecha de creación, fecha de modificación, etc. MDSM utiliza estándares (ontologías y 
vocabularios)  para  representar  y  describir  estos  datos.  Además,  también  se  encarga  de 
especificar los procesos necesarios para limpiar y transformar un conjunto de datos.

 MMM: Este  módulo  se  encarga  de  gestionar  el  conocimiento  sobre  el  entrenamiento  y 
validación de los modelos de Aprendizaje Automático. Para ello, guarda todas las características 
de los modelos de Aprendizaje Automático con sus reglas y procesos para su creación. Además,  
registra todas las validaciones y pruebas realizadas sobre estos modelos, con el objetivo de 
comparar sus calidades.

A continuación, se detallan los módulos de KML:
 FEM: Este módulo se encarga de preparar el conjunto de datos de entrada adecuado para el 

modelo de Aprendizaje Automático, utilizando como base de conocimiento la información que 
tiene LDM.

 TM: Este módulo se encarga de seleccionar el algoritmo de Aprendizaje Automático y preparar 
su configuración, utilizando el conocimiento proporcionado por el MLM sobre experiencias en 
ejecuciones anteriores, lo que le permite identificar los algoritmos adecuados para resolver el 
problema.

 MBM: Este módulo se encarga del entrenamiento y validación de los modelos de Aprendizaje 
Automático, utilizando como base de conocimiento la información proporcionada por TM sobre 
la configuración del algoritmo a utilizar.

 MIntM: Este  módulo  es  activado  opcionalmente  por  MLM,  cuando  se  deben  integrar  los 
modelos de Aprendizaje Automático previamente creados, utilizando técnicas como Bagging, 
Boosting, Stacking, entre otras. En concreto, este módulo permite utilizar los modelos básicos 
previamente  creados  como  bloques  de  construcción  para  diseñar  modelos  de  Aprendizaje 
Automático más complejos mediante su combinación. La razón puede ser que estos modelos 
básicos no funcionen tan bien por sí solos, ya sea porque tienen un sesgo alto (por ejemplo,  
modelos de bajo grado de libertad) o porque tienen demasiada varianza para ser robustos (por 
ejemplo, modelos de alto grado de libertad).

5.2 Ampliación de la Arquitectura

Esta sección presenta un resumen extenso del trabajo presentado en [63], y la sección 4 del artículo 
presentado  en  el  Anexo  5.B  contiene  los  detalles  completos.  Esta  investigación  amplía 



significativamente el trabajo presentado en la sección anterior, al optimizar la generación de modelos 
de conocimiento usando un ciclo autónomo de tareas, pero además, integra nuevas capacidades. A su 
vez, en la sección 5.2.1 se presentan los detalles sobre la generación de características usando modelos 
de Aprendizaje Automáticos, y en la sección 5.2.2 se presentan los detalles sobre la generación de datos 
artificiales usando Datos Enlazados. Estas ampliaciones se enumeran a continuación (véase la Figura 
5.2):

 El corazón de esta innovación radica en la implementación de un Meta-Algoritmo autónomo 
que permite automatizar la construcción de modelos de Aprendizaje Automático, invocando los 
diferentes  módulos  especializados  de  forma  estratégica,  seleccionando  las  herramientas  y 
técnicas  más  apropiadas  (Nuevo  módulo  de  Meta-Technique)  para  resolver  las  tareas 
específicas  a  mano.  Además,  incorporando  de  forma  inteligente  los  nuevos  módulos  de 
aprendizaje por transferencia como Transferencia de Modelos, Transferencia de Parámetros y 
Transferencia de Datos, así como y Generación de Datos Sintéticos.

 A su vez, se ha reorganizado y ampliado KML, lo que permite agrupar características similares 
en el proceso de Aprendizaje Automático, facilitando futuras mejoras y ampliaciones de cada 
grupo de características. Esta capa se ha redefinido en tres nuevos módulos especializados:
I. Dataset Engineering (DEM): Ingeniería de conjuntos de datos (DEM): Responsable de la 

preparación y optimización de los conjuntos de datos garantizando que son adecuados para 
el  análisis  y  la  modelización.  Incluye  nuevos  submódulos,  como  Dataset  Acquisition, 
Dataset Preparation, Data Transfer y Generate Synthetic Data.

II. Feature  Engineering  (FEM): Dedicado  a  la  creación  y  selección  de  características 
relevantes, que permitirán a los modelos capturar las relaciones subyacentes en los datos. Se 
añaden los  submódulos  AutoFeature  y  Feature  Generation.  Además,  se  integran  nuevas 
técnicas a los submódulos Feature Extraction y Feature Selection.

III. Model  Engineering  (MEM): Centrado  en  el  diseño,  entrenamiento  y  evaluación  de 
modelos ML, seleccionando la arquitectura y los hiperparámetros más adecuados para cada 
tarea. Incluye nuevos submódulos como Model Transfer y Parameter Transfer.

Figura 5.2: Arquitectura de Meta-Aprendizaje ampliada (nuevos componentes resaltados 
en recuadros rojos).



A. Meta-Algoritmo Autónomo

En la capa MKL, el módulo MLM gestiona la activación de los diferentes módulos de la arquitectura 
mediante un Meta-Algoritmo Autónomo. Este algoritmo guía cada decisión y proceso en función de las 
necesidades específicas de cada tarea y del conocimiento que la arquitectura ha adquirido de tareas 
anteriores. La Figura 5.3 presenta el diagrama de flujo que ilustra los principales procesos y decisiones.  
El Meta-Algoritmo Autónomo detecta cuando MLM recibe el problema a resolver. Analiza el problema 
y lo caracteriza, e invoca al módulo de Dataset Acquisition, solicitando los posibles datasets a utilizar 
para el problema caracterizado. Una vez que el conjunto de datos está disponible, procede a activar el  
proceso  de  Dataset  Preparation para  normalizar  el  conjunto  de  datos.  En  este  punto,  el  Meta-
Algoritmo  Autónomo  comprueba  si  existe  un  modelo  previamente  creado  con  las  mismas 
características y conjunto de datos de entrada (Decision 1). Si el modelo existe, procede a realizar una  
transferencia  de  modelo  usando  el  módulo  Model  Transfer, y  entrega  el  modelo  con  su  meta-
información. En caso contrario, se inicia el proceso de creación de un nuevo modelo. Para comenzar 
con la creación de un nuevo modelo, se comprueba si existe un modelo con características y conjunto  
de datos similares (Decision 2). Si existe, se toma el modelo con mejores resultados y se realiza una 
transferencia  de  parámetros  usando  el  módulo  Parameter  Transfer.  En  ambos  casos,  el  proceso 
continúa con la tercera decisión (Decision 3), en la que se comprueba si el conjunto de datos es lo 
suficientemente  grande  como para  crear  el  nuevo  modelo.  En  este  caso,  el  conjunto  de  datos  se 
almacena con su Meta-Dataset. En caso contrario, se comprueba si existe un conjunto de datos similar 
en la arquitectura (Decision 4). Si existe, el conjunto de datos se utiliza para realizar una transferencia  
de datos usando el módulo  Data Transfer. En caso contrario, el conjunto de datos original se utiliza 
para generar datos sintéticos (Generate Synthetic Data). En ambos casos, el conjunto de datos obtenido 
se almacena con su Meta-Datos. A continuación, el Meta-Algoritmo Autónomo procede a activar el 
módulo de Feature Engineering para seleccionar, extraer o generar las características relevantes para el 
problema específico. Por último, se activa  Create Model para ejecutar los procesos  Tunning,  Model 
Building y  Model  Integration.  Al  finalizar,  el  modelo  generado  se  almacena  con  todas  sus 
características (usando Create Meta-Model), y se entrega con su meta-información. Para la creación de 
nuevos modelos sin transferencia previa de conocimientos, se utiliza la información proporcionada por 
el módulo  Meta-Technique. Este módulo se dedica a gestionar de forma inteligente el conocimiento 
asociado a las técnicas de aprendizaje disponibles en la arquitectura para diferentes tareas. Así, facilita  
una comprensión más profunda y una gestión más eficaz de las técnicas de aprendizaje, incluyendo 
valores por defecto para sus hiperparámetros, métricas asociadas, entre otros.



B. Modificación de KML

Para mejorar la modularidad y la gestión de características, KML se ha estructurado en tres módulos 
especializados:  DEM,  FEM  y  MEM.  Estos  módulos  ofrecen  varias  ventajas,  como  una  mejor 
organización de las funcionalidades relacionadas en los procesos de KML, la simplificación de las 
tareas de mantenimiento y la posibilidad de realizar mejoras y ampliaciones específicas.

El  nuevo MDE agrupa los procesos asociados a la gestión de conjuntos de datos, ocupándose de su 
adquisición,  preparación,  optimización  y  generación  para  garantizar  su  idoneidad  en  el  análisis  y 
construcción  de  modelos  de  conocimiento.  El  Meta-Algoritmo  Autónomo  activa  estos  procesos 
(submódulos) con la información del MDSM, según el requerimiento deseado. Entre los submódulos 
disponibles se encuentran los siguientes:

 Dataset Acquisition [38, 37]: El objetivo de este módulo es encontrar muestras de datos para el 
contexto  dado,  o  recopilar  el  conjunto  de  datos  proporcionado  por  el  usuario.  Cuando  se 
requiere buscar muestras de datos, se obtienen utilizando mecanismos de búsqueda basados en 
ML, aprovechando Fuentes de Datos Abiertas (Open Data Sources, ODS) o endpoints, como los 
proporcionados oficialmente en países como Estados Unidos (https://www.data.gov/), España 
(https://datos.gob.es/) y Europa (https://data.europa.eu), entre muchos otros.

 Dataset Preparation [38, 37]: El objetivo de este módulo es transformar el conjunto de datos 
de la muestra en una representación óptima para los modelos que se van a construir. En este 
proceso,  los  atributos  con  datos  textuales  o  numéricos  que  representan  un  conjunto  finito 
específico de categorías o clases se procesan como Datos Categóricos, y los atributos con datos 
numéricos y alta varianza se normalizan.

 Generate  Synthetic  Data  [38,  37,  64,  65]: El  objetivo  de  este  módulo  es  generar  datos 
sintéticos a partir de la muestra de datos optimizada. En este proceso, se construye y entrena un 
modelo de conocimiento que extrae y aprende automáticamente las características de la muestra 
de datos. Con este modelo, se generan los datos sintéticos necesarios (más detalles en la sección 
5.2.2).

Figura 5.3: Meta-algoritmo autónomo para MLM, mostrando la invocación a los 
procesos KML (Rojo) y MKL (Verde).



 Data Transfer [66, 67, 68]: El objetivo de este módulo es transferir datos de un dominio de 
origen al dominio de destino. Este enfoque implica medir la similitud entre un dominio de 
origen y un dominio de destino, y seleccionar un dominio de origen similar que tenga muchos 
más datos de entrenamiento que el dominio de destino.

FEM concentra los procesos de generación y selección de características relevantes a partir de los 
datos,  lo  que  permite  a  los  modelos  identificar  las  relaciones  subyacentes  en  los  datos.  El  Meta-
Algoritmo Autónomo activa estos procesos (submódulos) utilizando información de MFM y MTM. 
Dentro del  FEM, AutoFeature y Feature Generation son nuevos submódulos,  pero además,  se han 
ampliado los submódulos Feature Selection y Feature Extraction.

 AutoFeature [69]: Este módulo aplica automáticamente diferentes técnicas de ingeniería de 
características, como la generación de características basada en redes CNN, donde los datos se 
transforman  en  imágenes.  A continuación,  las  imágenes  se  utilizan  como  entrada  para  un 
modelo CNN que genera las características (más detalles en la sección 5.2.1).

 Feature Generation [37,  70]: Este módulo aplica técnicas de generación de características 
como  i.  Característica  de  Interacción,  ii.  Característica  Polinomial,  iii.  Característica 
Trigonométrica, iv. Creación de Clusters. y iv. Combinación de Niveles Raros.

 Feature Extraction [37, 71]: Este módulo aplica técnicas de extracción de características como 
i.  Cálculo  de  característica  basada  en  la  media,  ii.  Cálculo  de  característica  basada  en  la  
mediana y iii. Cálculo de característica basada en cuartiles.

 Feature Selection [37, 72]:  Este módulo aplica técnicas de selección de características como i. 
Importancia  de  la  Característica  por  Permutación.  ii.  Eliminación  de  Multicolinealidad.  iii. 
Filtrado por Baja Varianza. Y iv. Selección de Características usando metaheurísticas como los 
Algoritmos Genéticos.

MEM agrupa los procesos (submódulos) asociados al diseño, entrenamiento y evaluación de modelos 
de Aprendizaje Automático, permitiendo al Meta-Algoritmo Autónomo, con información de MTM y 
MMM, determinar la arquitectura e hiperparámetros óptimos para cada tarea. Adicionalmente, ofrece 
procesos para la reutilización de la información de los modelos previamente creados. Los procesos 
disponibles se detallan a continuación:

 Create Model [9]: Este módulo se encarga de entrenar y validar los modelos de Aprendizaje 
Automático, utilizando como base de conocimiento la información proporcionada por MLM 
sobre la configuración del algoritmo a utilizar y su respectivo conjunto de datos.

 Model  Transfer  [66,  38,  64]: El  objetivo  de  este  módulo   es  transferir  el  mejor  modelo 
construido  del  dominio  de  origen al  dominio  de  destino.  Para  ello,  se  selecciona  el  mejor 
modelo entrenado del dominio de origen cuando las características del modelo de origen son 
muy similares a las características del modelo de destino. Este modelo será el que se transfiera.  
En segundo lugar, se ajustan las variables del conjunto de datos de destino para que coincidan  
con las variables del conjunto de datos de origen, lo que permitirá utilizar correctamente el  
modelo que se va a transferir. Por último, se entrega el conjunto de datos de destino ajustado 
con el modelo de origen transferido.

 Parameter Transfer [66, 38, 64]: El objetivo de este módulo es transferir los parámetros del 
mejor modelo construido en el dominio de origen al dominio de destino. Para ello, en primer 
lugar, se selecciona el mejor modelo entrenado en el dominio de origen. En segundo lugar, se 
transfieren los parámetros de este modelo al modelo del dominio de destino para mejorarlo. Los 
dominios de origen son aquellos modelos de Aprendizaje Automático con mayor rendimiento y 
cuyos conjuntos de datos sobre los que se ha entrenado tienen una mayor similitud estadística 



con el dominio de destino. El modelo más similar y mejor es el que se utiliza para transferir  
todos sus parámetros.

5.2.1 Generación de Características

Este apartado resume el trabajo presentado en [69], cuyos detalles se encuentran en la sección III del  
artículo presentado en el Anexo 5.C. A continuación, se describe la arquitectura propuesta, denominada 
EAFECNN (Explainability Analysis FE-CNN), detallando cada uno de sus módulos. Esta arquitectura 
surge de la necesidad de aprovechar la capacidad de las CNN para la generación de características en 
problemas  con  datos  tabulares.  Para  ello,  se  implementan  dos  mecanismos  que  automatizan  la 
ingeniería de características (véase la Figura 5.4): en primer lugar, la transformación de datos tabulares 
a imágenes (Multidimensional Transformation), que introduce la generación implícita de características 
al cambiar la representación de la información; y en segundo lugar, el uso de la capacidad inherente de 
las  CNN  para  generar  automáticamente  características  relevantes  en  cada  capa  (CNN  Feature 
Generator). Además, se incorporan técnicas de análisis de explicabilidad para comprender mejor el  
funcionamiento interno del modelo y ofrecer una mayor transparencia en las decisiones tomadas (CNN 
Explainability  Analysis).  Esta  combinación  permite  una  mayor  confianza  y  transparencia  en  la 
generación de características en tareas de Aprendizaje Automático. Así, proponemos una arquitectura 
compuesta por los siguientes módulos (véase la Figura 5.4): Multidimensional Transformation (MT), 
CNN Feature Generator (CNN-FG), y CNN Explainability Analysis (CNN-EA). A continuación se 
describe detalladamente cada módulo.

A. Módulo MT

El principal objetivo de este módulo es preparar la muestra de datos de forma óptima para su uso en  
modelos  basados  en  CNN.  Esto  implica  transformar  los  datos  tabulares  en  una  representación 
multidimensional, concretamente en imágenes sintéticas [73]. Existen varios métodos para realizar esta 
transformación que, en general, se basan en asignar los datos a posiciones o escalas de color específicas 
dentro  de  los  píxeles  de  la  imagen.  De este  modo,  las  características  de  los  datos  se  representan  

Figura 5.4: Arquitectura EAFECNN.



visualmente en la imagen sintética. TINTOlib (https://tintolib.readthedocs.io/) es una biblioteca que 
proporciona diversos métodos para realizar esta tarea de transformación, como:

 TINTO: Este algoritmo convierte  datos en imágenes mediante la  representación de píxeles 
característicos, aplicando métodos de reducción bidimensional como PCA y T-SNE.

 SuperTML: Este algoritmo asigna cada característica a una región única dentro de la imagen. 
El valor de la característica se representa como texto sobre fondo negro, utilizando un tamaño 
de fuente que puede ser fijo o variable en función de la importancia de la característica.

 IGTD: Este  algoritmo  asigna  cada  característica  a  una  posición  de  píxel  específica  en  la 
imagen.  La  intensidad  del  píxel  se  utiliza  para  representar  el  valor  de  la  característica 
correspondiente en la muestra.

 REFINED: Este algoritmo tiene en cuenta las similitudes entre las características para generar 
un mapa de características conciso en forma de imagen bidimensional minimizando los valores 
de distancia por pares siguiendo un enfoque de escalado multidimensional métrico bayesiano. 

 BarGraph: Este  algoritmo  genera  un  gráfico  de  barras  blancas  sobre  fondo  negro  para 
representar  cada una de  las  muestras.  Cada barra  representa  una característica  normalizada 
específica presente en el conjunto.

 DistanceMatrix: Este algoritmo calcula la matriz de distancias entre las características y luego 
aplica una normalización para establecer una escala blanco/negro entre 0 y 255.

 Combination: Este algoritmo combina BarGraph y DistanceMatrix,  utilizando una capa de 
color diferente de la imagen para cada algoritmo.

La tabla 5.1 muestra el macro-algoritmo MT. Este proceso comienza con la preparación del conjunto de 
datos para garantizar que sean compatibles con el proceso de transformación (paso 1), ya que solo 
admite conjuntos de datos numéricos. Se trata de convertir los valores textuales en valores numéricos 
discretos que representen las distintas categorías presentes en los datos (paso 1.1). Por último, en la 
etapa 2, se aplica el método de transformación seleccionado al conjunto de datos preparado. El proceso 
de transformación consiste en convertir cada fila del dataset en una imagen. Las imágenes se agrupan 
en  carpetas  según  las  distintas  clases  objetivas.  El  resultado  final  es  un  conjunto  de  datos 
multidimensional que será utilizado por el modelo de Aprendizaje Automático basado en CNN.

Tabla 5.1: Macro-algoritmo del módulo MT que transforma el conjunto de datos para CNN.

Entrada: Dataset de muestra y Método de Transformación
Procedimiento:
1. Prepara el Dataset para la Transformación
1.1. Se categorizan los atributos textuales
2. Transforma el Dataset de muestra con el Método de Transformación
Salida: Dataset Multidimensional

B. Módulo CNN-FG

El objetivo de este módulo es realizar el proceso de generación de características utilizando modelos 
basados en CNN. Estos modelos tienen la capacidad de automatizar este proceso, utilizando las capas 
iniciales e intermedias del modelo CNN, ya que es en estas capas donde se realiza este proceso. En 
concreto, se utiliza un modelo ResNet-50 pre-entrenado (ver Figura 5.5), aprovechando las capas de las 
etapas 1 a 5, encargadas de extraer características básicas y de bajo nivel de las imágenes, como bordes, 
colores  y  texturas;  y  descartando  las  capas  siguientes  (recuadro  rojo),  encargadas  de  aprender 



características más específicas y de alto nivel. Al utilizar un modelo preentrenado como ResNet-50, se  
aprovecha el conocimiento adquirido a partir de grandes datasets, lo que reduce significativamente el  
tiempo y los recursos necesarios para entrenar el modelo en una tarea específica, además de regularizar  
y evitar el sobreajuste. Además, el modelo preentrenado ya ha aprendido representaciones genéricas de 
imágenes a partir de un enorme dataset, lo que lo hace adecuado para esta tarea de generación de 
características.

La tabla 5.2 muestra el macro-algoritmo CNN-FG. Este proceso comienza cargando el modelo ResNet-
50 que ha sido previamente entrenado utilizando un conjunto masivo de datos de imágenes (Paso 1). En 
el  Paso 2,  se procede a eliminar las  capas de clasificación,  que son las capas finales del  modelo, 
buscando aprovechar el  conocimiento adquirido por las capas intermedias del  modelo,  expertas en 
extraer información visual relevante. A continuación, el modelo modificado se utiliza para procesar  
cada  elemento  del  Dataset  Multi-Dimensional  generado  por  el  módulo  anterior,  generando  una 
representación vectorial de las características genéricas presentes en la imagen (Paso 3). Por último, las 
características  generadas  se  extraen  del  modelo  modificado  y  se  almacenan  en  el  Dataset  de 
Características (Paso 4).

Tabla 5.2: Macro-algoritmo del módulo CNN-FG para generar las características.

Entrada: Dataset Multi-Dimensional
Procedimiento:
1. Carga el modelo ResNet-50 preentrenado.
2. Elimina las capas finales del modelo cargado.
3. Procesa el Dataset Multi-Dimensional a través del modelo modificado.
4. Guarda las características generadas en el Dataset Optimizado.
Salida: Dataset de características

C. Módulo CNN-EA

Figura 5.5: Arquitectura RESNET-50.



El objetivo de este módulo es revelar el funcionamiento interno del modelo CNN proporcionando una 
representación visual o textual que detalle el razonamiento que subyace a las decisiones tomadas por el 
modelo para cada imagen del conjunto de datos. Esta transparencia en el proceso de toma de decisiones 
permite a los usuarios comprender mejor las capacidades y limitaciones del modelo, identificar posibles 
sesgos o errores, y generar confianza en sus resultados. Existen varias técnicas de explicabilidad para 
llevar a cabo esta tarea, por ejemplo:

 GRADCAM (Gradient-weighted Class Activation Mapping) [74]: Genera un mapa de calor 
que  resalta  las  regiones  de  la  imagen  que  más  contribuyeron  a  la  predicción  del  modelo 
calculando el gradiente de la puntuación de clasificación con respecto a las activaciones de las 
características convolucionales.

 SCORECAM (SCoring by Output RE-CAM) [75]: Genera un mapa de calor que muestra las 
ROIs (Regiones de Interés) y sus puntuaciones. Las ROIs son regiones de interés donde más 
influyen en la predicción del modelo. Para asignarles una puntuación, se calcula el gradiente de 
la función de pérdida del modelo con respecto a la activación de cada ROI.

 LAYERCAM  (Layer-wise  Attention  Chain-based  Attention  Mapping)  [76]: Genera  un 
mapa  de  activación  visualizando  qué  partes  de  las  entradas  son  más  importantes  para  la 
predicción del modelo, utilizando una cadena de atención para propagar la atención desde la 
última capa de la CNN a las capas anteriores.

 GUIDEDBP (Guided Upward Input Deep Back Propagation) [77]: Genera un mapa de 
calor, que muestra las regiones que tuvieron mayor impacto en la clasificación. Se basa en la 
idea de modificar el proceso de retropropagación para identificar las regiones de entrada que 
más contribuyen a la activación de una neurona específica.

La Tabla 5.3 muestra el macro-algoritmo CNN-EA, este proceso comienza seleccionando la técnica de 
explicabilidad deseada (Paso 1). En el Paso 2, la técnica de explicabilidad seleccionada se aplica a cada  
imagen del Dataset Multi-Dimensional, y se genera un informe de las representaciones visuales que 
explican cómo el modelo CNN toma decisiones para cada imagen.

Tabla 5.3: Macro-algoritmo del módulo CNN-EA para analizar el modelo.

Entrada: Dataset Multi-Dimensional y Modelo CNN
Procedimiento:
1. Selecciona la técnica de explicabilidad
2. Genera un Informe de Análisis de Explicabilidad según la técnica seleccionada
Salida: Informe del Análisis de Explicabilidad

5.2.2 Generación de Datos Artificiales

Esta sección presenta un resumen extenso de los trabajos presentados en [38, 37], y los detalles se 
encuentran en la sección II del artículo presentado en el Anexo 5.D y en la sección III del artículo  
presentado  en  el  Anexo  5.E.  La  generación  de  datos  artificiales  implica  un  conjunto  de  procesos 
complejos que permiten identificar, extraer, transformar y aprender las características relevantes del  
conjunto de datos a generar.  La arquitectura SDGS (Synthetic Data Generation System) logra esto 
mediante la combinación del paradigma de Datos Enlazados para identificar y extraer datos de Internet,  
y la técnica VAE para transformar y aprender un modelo con estos datos, de forma que este modelo  



pueda utilizarse  posteriormente  para  generar  datos  sintéticos.  Esta  arquitectura  se  compone de  los 
siguientes módulos (véase la Figure 5.6) [38]:

 DataSet Acquisition (DSA): El objetivo de este módulo es encontrar muestras de datos a través  
de mecanismos de búsqueda basados en Datos Enlazados, aprovechando ODS o endpoints.

 Data Preparation (DP): El objetivo de este módulo es optimizar la muestra de datos. Normaliza 
atributos numéricos con alta varianza y procesa datos textuales o numéricos que representan un 
conjunto finito específico de categorías o clases.

 Synthetic  Data  Generation  (SDG):  El  objetivo  de  este  módulo  es  generar  datos  sintéticos 
entrenando un modelo de conocimiento basado en VAE, que extrae y aprende automáticamente 
las características de la muestra de datos optimizada para un contexto determinado.

Luego,  en  [37]  se  amplió  el  enfoque  propuesto  (ver  Figura  5.7).  En primer  lugar,  añadiendo dos  
procesos al módulo DSA, un primer proceso centrado en el uso de múltiples fuentes de datos y un  
segundo proceso centrado en la fusión de múltiples conjuntos de datos. Además, se añade un nuevo 
módulo, denominado Feature Engineering (FE), para analizar las características de los conjuntos de 
datos  de  muestra  que  utilizará  el  SDG,  permitiendo  la  fusión  de  características,  la  extracción  de 
características y la selección de características. Por último, el SDG se implementa utilizando la técnica  
VAE como generador de datos.

A. Módulo DSA

El  objetivo  de  este  módulo  es  encontrar  muestras  de  datos  para  un  contexto  dado  utilizando  el  
paradigma de  Datos  Enlazados.  La  Tabla  5.4  muestra  el  macro-algoritmo  del  módulo  DSA.  Este 

Figura 5.6: Arquitectura de generación sintética de datos.

Figura 5.7: Ampliación del SDGS.



módulo comienza analizando el contexto de las muestras de datos requeridas, obteniendo las palabras 
clave para buscar las muestras de datos (Paso 1). A continuación, se invoca el proceso Multi-sources 
para buscar los datasets utilizando las palabras clave obtenidas en el paso anterior (Paso 2). Por último, 
si se decide fusionar los datasets obtenidos con otro dataset de un contexto asociado (Paso 3), se invoca 
el proceso de Multi-datasets (Paso 3.1).

Tabla 5.4: Macro-algoritmo del módulo DSA.

Entrada: Contexto específico
Procedimiento:
1. Se analiza el contexto de los datos requeridos para obtener las palabras clave de búsqueda.
2. Se invoca el proceso Multi-sources para encontrar una Muestra de Datos utilizando las palabras 
clave de búsqueda
3. Si se fusiona la Muestra de Datos:
3.1 Invocar el proceso Multi-dataset de datos para fusionar la Muestra de Datos con el dataset del 
contexto asociado.
Salida: Nuevo dataset

A.1. Proceso Multi-sources en DSA

El  objetivo  de  este  proceso  es  encontrar  muestras  de  datos  de  diferentes  fuentes  de  datasets.  En 
concreto,  las  muestras de datos se obtienen utilizando mecanismos de búsqueda basados en Datos 
Enlazados,  aprovechando  el  ODS,  buscando  en  cada  fuente  de  dataset  registrada  en  el  SDGS  y 
seleccionando los datasets de muestra que mejor se ajusten al contexto específico requerido. Estas 
fuentes  de  datasets  son  proporcionadas  oficialmente  por  países/regiones  como  Europa 
(https://data.europa.eu),  España  (https://datos.gob.es/),  Canadá  (https://open.canada.ca),  Estados 
Unidos (https://www.data.gov/), y otros. Los metadatos publicados por estas fuentes siguen el estándar 
CKAN (https://ckan.org/), que permite realizar consultas utilizando el lenguaje SPARQL. La Tabla 5.5 
muestra el macro-algoritmo del Proceso Multi-sources en DSA. Este proceso comienza preparando las 
consultas de búsqueda para cada fuente de dataset (Paso 1). A continuación, se ejecuta cada consulta en 
cada fuente de dataset, y se obtiene la lista de posibles datasets (Paso 2). Por último, la lista se ordena 
según el grado de coincidencia con el contexto requerido (Paso 3).

Tabla 5.5: Macro-algoritmo del proceso multisources para buscar muestras de datos.

Entrada: Palabras clave de búsqueda
Procedimiento:
1. Prepara las consultas de búsqueda con las palabras clave de búsqueda para cada fuente de dataset 
basándose en el paradigma de Datos Enlazados.
2. La búsqueda se ejecuta para cada fuente de dataset y se añade a la lista de posibles muestras de 
datos.
3. Se clasifican y seleccionan las muestras de datos que mejor se ajustan a la búsqueda.
Salida: Muestra de datos

A.2. Proceso Multi-datasets en DSA



El objetivo de este proceso es construir datos de muestra que combinen información de diferentes 
datasets.  En  concreto,  teniendo  un  dataset  del  contexto  principal  requerido,  se  busca  otro  dataset 
perteneciente a un contexto asociado al contexto principal. A continuación, se buscan relaciones entre 
las características de los datasets; las coincidencias se utilizan como pivotes para la fusión de ambos  
datasets.  La tabla 5.6 muestra el  macroalgoritmo del proceso Multi-datasets en DSA. Este proceso 
comienza  invocando el  proceso  Multi-sources  para  encontrar  una  Muestra  de  Datos  del  Contexto 
Asociado (Paso 1). En el Paso 2, busca las similitudes de ambas Muestras de Datos; esta similitud se 
basa en el nombre y el tipo de cada característica de la Muestra de Datos Principal y de la Muestra de 
Datos del Contexto Asociado. Por último, fusiona la Muestra de Datos Principal y la Muestra de Datos 
de Contexto Asociada utilizando las similitudes como pivote (Paso 3), generando una Muestra de Datos 
Fusionada.

Tabla 5.6: Macro-algoritmo del proceso multidatasets para fusionar muestras de datos.

Entrada: Muestra de datos principales, palabras clave de búsqueda contextual asociadas
Procedimiento:
1. Se invoca el proceso Multi-sources para encontrar una Muestra de Datos utilizando las Palabras 
Clave de Búsqueda de Contexto Asociadas.
2. Busca posibles similitudes entre las características de la Muestra de Datos Principal y la Muestra de 
Datos de Contexto Asociada.
3. Fusione ambas Muestras de Datos usando las similitudes como pivote.
Salida: Muestra de datos fusionada

B. Módulo DP

El objetivo de este módulo es transformar el dataset de la muestra en una representación óptima para el  
modelo VAE, sabiendo que este tipo de modelo funciona óptimamente con datos que oscilan entre [0 y  
1]  o  [-1  y  1],  ya  sean  datos  binarios  (digitales)  o  continuos  (analógicos).  En  este  proceso,  se  le  
atribuyen datos textuales o numéricos que representan un conjunto finito específico de categorías o 
clases  que se  procesan como Datos Categóricos,  donde los  datos  numéricos y de alta  varianza se 
normalizan. La Tabla 5.7 muestra el macro-algoritmo DP, que comienza analizando el dataset para  
determinar los procesos que serán necesarios para cada columna de la muestra de datos (Paso 1). Para 
las columnas con datos numéricos o con muchos valores diferentes, procede a normalizarlos (Paso 2).  
Para las columnas con datos textuales o numéricos que pueden representarse en categorías o clases, 
procede a categorizarlas (Paso 3).

Tabla 5.7: Macro-algoritmo del módulo DP para optimizar la muestra de datos.

Entrada: Dataset de muestra
Procedimiento:
1. Se analiza la muestra de datos.
2. Se normalizan los atributos con datos numéricos y alta varianza.
3. Se categorizan los atributos con datos textuales y numéricos con valores finitos.
Salida: Muestra de datos preprocesados

C. Módulo FE



El objetivo de este módulo es analizar las características del dataset de muestra. Concretamente, analiza 
la muestra de datos preprocesados generada por el módulo DP, obteniendo nueva información a partir  
de las características del dataset y seleccionando las características que ofrecen más información para el 
módulo SDG. La Tabla 5.8 muestra el macro-algoritmo del módulo FE. Este proceso comienza con el 
análisis del dataset (paso 1). Después, en el paso 1.1, la información se agrega aplicando técnicas de 
generación de características como i. Característica de Interacción, ii. Característica Polinómica, iii.  
Característica Trigonométrica, iv. Creación de Clusters, v. Combinación de Niveles Raros. En el paso 
1.2  se  añade  información  aplicando  técnicas  de  extracción  de  características  como  i.  Cálculo  de 
característica basada en la media, ii. Cálculo de característica basada en la mediana y iii. Cálculo de  
característica basada en cuartiles. Por último, en el paso 1.3, selecciona las características que ofrecen 
más  información,  aplicando  técnicas  de  Selección  de  Características  como  i.  Importancia  de  la  
Característica por Permutación. ii. Eliminación de Multicolinealidad. iii. Filtrado por Baja Varianza. Y 
iv. Selección de Características usando metaheurísticas como los Algoritmos Genéticos.

Tabla 5.8: Macro-algoritmo de FE para mejorar la muestra de datos.

Entrada: Muestra de datos preprocesados
Procedimiento:
1. Analiza la Muestra de Datos Preprocesada:
1.1. Añade nueva información generada a partir de sus características
1.2. Añade nueva información extraída de sus características.
1.3. Seleccionar las características que aportan más información.
Salida: Muestra de datos mejorada

D. Módulo SDG

El objetivo de este módulo es generar los datos sintéticos a partir de la muestra de datos optimizada en 
el módulo anterior. En este proceso, se construye y entrena un modelo de conocimiento que extrae y 
aprende  automáticamente  las  características  de  la  muestra  de  datos  utilizando  VAE.  La  Tabla  5.9 
muestra el  macro-algoritmo SDG, el proceso comienza configurando y construyendo el modelo de 
conocimiento que aprenderá las características latentes en la muestra de datos (Paso 1). En el Paso 2 se  
procede a entrenar el modelo de conocimiento utilizando VAE y la muestra de datos. Por último, se 
genera el dataset sintético utilizando el modelo de conocimiento previamente creado y entrenado (Paso 
3).

Tabla 5.9: Macro-algoritmo de SDG para la generación de datos sintéticos.

Entrada: Muestra de datos mejorada
Procedimiento:
1. Se construye el modelo de conocimiento con la configuración deseada.
2. Se entrena el modelo de conocimiento que representa la muestra de datos.
3. Se genera el dataset sintético con el modelo de conocimiento.
Salida: Dataset sintético



5.3 Casos de Estudio

El presente apartado detalla, en la sección 5.3.1, un caso de estudio demostrativo de la activación de los 
módulos de la arquitectura mediante el Meta-Algoritmo Autónomo. Posteriormente, las secciones 5.3.2 
y 5.3.3 presentan casos de estudio enfocados en la generación de características y en la generación de 
datos, respectivamente.

5.3.1 Caso 1: Meta-Algoritmo Autónomo

Esta sección presenta un resumen del trabajo referenciado en [63], cuyos detalles se encuentran en la  
sección 5 del artículo presentado en el Anexo 5.B. El caso de estudio se centra en la información 
recogida en Café Galavis (Cúcuta, Colombia). Este caso de estudio muestra el proceso de activación de 
los  módulos  de  la  arquitectura,  guiados  por  el  Meta-Algoritmo  Autónomo  y  basados  en  los 
requerimientos  de  Café  Galavis,  para  generar  modelos  de  conocimiento  que  resuelven  diferentes 
problemas. En concreto, nuestra arquitectura ejecuta determinados grupos de pasos en función de los 
requerimientos y la información del entorno. La Figura 5.8 muestra estos pasos que se utilizarán en los  
experimentos: 1) Transferencia del Modelo, 2) Transferencia de Parámetros, 3) Creación del Modelo, 
4) Transferencia de Datos y 5) Generación de Datos Sintéticos.

En este caso de estudio se realizan 5 experimentos, los cuales se llevan a cabo de forma secuencial y 
cada uno de ellos se basa en los resultados de los anteriores, lo que permite una retroalimentación 
progresiva del sistema. Los experimentos muestran la dinámica de activación de las distintas partes del 
Meta-Algoritmo en la arquitectura. Para ello se utiliza la herramienta de trazabilidad implementada en 
la arquitectura, que facilita la visualización secuencial de las decisiones tomadas y los conjuntos de 

Figura 5.8: Grupos de pasos del meta-algoritmo autónomo.



pasos activados en cada instante de la ejecución. Ahora bien,  en esta sección solo detallaremos el 
primer experimento, el resto se puede consultar en la sección 5 del artículo presentado en el Anexo 5.B.

El experimento 1 se dedica a evaluar la activación de los módulos de Generación de Datos Sintéticos  
(Paso 5) y Creación de Modelos (Paso 3) solicitando un modelo No Supervisado/Clustering a partir del 
archivo  File1.csv  (compuesto  por  1.286  registros  que  incluye  características  como  método  de 
procesado, variedad de semilla, aroma, sabor, acidez, cuerpo, uniformidad, dulzor y humedad, y otros). 
Además, hay que considerar el estado inicial que la arquitectura mantiene para la gestión del proceso  
de Meta-Aprendizaje. Esta información se estructura en tablas que contienen el Meta-Modelo (modelos 
previamente entrenados), Meta-Dataset (características de los datasets) y Meta-Técnica (algoritmos de 
Aprendizaje Automático), los cuales se pueden consultar en la sección 5.1 del artículo presentado en el  
Anexo 5.B.

La Figura 5.9 presenta la trazabilidad de la ejecución del Meta-Algoritmo para resolver esta petición. 
El primer paso es Init (siempre llamado en todas las ejecuciones), que activa los procesos  Dataset 
Acquisition y  Dataset Preparation. El proceso Datasets Acquisition comprueba si se ha suministrado 
un dataset de entrada o si hay que buscarlo con Datos Enlazados. En este caso, se ha suministrado el 
dataset  de  entrada.  A continuación,  se  activa  el  módulo  Datasets  Preparation para  normalizar  las 
variables. Entonces, como no hay modelos creados previamente para Unsupervised/Clustering en la 
tabla Meta-Model (Ver Tabla 3 en la sección 5.1 del Anexo 5.B), las decisiones 1 y 2 resultaron en  
“No” (ver Figuras 5.8 y 5.9). En la decisión 3, se rechazó la generación del modelo porque no se 
alcanzó el umbral mínimo de 2000 registros. Por último, en la decisión 4, el resultado es «No» debido a 
la ausencia de datasets muy similares en la Tabla de Meta-Datasets (Ver Tabla 2 en la sección 5.1 del 
Anexo 5.B). Por lo tanto, se decidió generar datos sintéticos activando el módulo Generate Synthetic 
Data para completar el dataset (Paso 5 en la Figura 5.8) y, posteriormente, realizar la activación de  
Feature Engineering,  para finalmente, crear modelo usando el módulo  Create Model (Paso 3 en la 
Figura 5.8). El módulo Generate Synthetic Data emplea un VAE para generar datos sintéticos a partir 
de conjuntos de datos dispersos. La VAE aprende una representación latente comprimida de los datos 
de entrada, capturando sus características más relevantes. A continuación, utiliza esta representación 
para generar nuevos datos que siguen una distribución similar a la de los datos originales. Para una 
comprensión más detallada del proceso, se recomienda revisar la sección 5.2.2.



Además,  como en este  experimento no hubo transferencia de modelos ni  de parámetros,  el  Meta-
Algoritmo Autónomo buscó en la tabla de Meta-Técnicas (ver Tabla 1 en la sección 5.1 del artículo  
presentado en el Anexo 5.B) las posibles técnicas de Aprendizaje Automático para resolver el problema 
de Unsupervised/Clustering. Esto generó la creación de un modelo con cada una de las tres técnicas  
encontradas, que se añadieron a la Tabla de Meta-Modelos (ver Tabla 5.10).

Tabla 5.10: Modelos añadidos en la tabla de Meta-Modelos de la arquitectura.

Id_MM Tipo Id_MT P1, P2, Pn VD1 …VDn Métrica Id_MD

MM_05
No supervisado/ 

Agrupación
MT_05 K=2

Aroma, Sabor, Retrogusto, 
Acidez, Cuerpo, Equilibrio, 

Uniformidad.

silhouette 
index=0.62

File1

MM_06
No supervisado/ 

Agrupación
MT_07

K=4, Distance technique= 
Euclidean, distance 
calculation=max,.

Aroma, Sabor, Retrogusto, 
Acidez, Cuerpo, Equilibrio, 

Uniformidad.

silhouette 
index=0.57

File1

MM_07
No supervisado/ 

Agrupación
MT_06

Epsilon (eps) = 5 and 
Minimum Points (minPts): 

5.

Aroma, Sabor, Retrogusto, 
Acidez, Cuerpo, Equilibrio, 

Uniformidad.

DBCV = 
0.93

File1

Finalmente, el Meta-Algoritmo Autónomo responde con el mejor modelo alcanzado (ver Tabla 5.10). 
La Figura 5.10 muestra  el  mejor  rendimiento (Métricas)  alcanzado utilizando DBScan con 0,9315 
(DBCV), muy próximo a uno. Este modelo clasificó la calidad del café en tres grupos: baja, media y  
alta.

Figura 5.9: Trazabilidad de la búsqueda de un modelo para el experimento 1.



5.3.2 Caso 2: Generación de Características

Este escenario surge cuando la Arquitectura de Meta-Aprendizaje requiere la aplicación de ingeniería 
de características, específicamente, la generación de características a partir de los datasets. La sección  
IV del artículo [69] presentado en el Anexo 5.C realiza una descripción detallada. El contexto en el que 
se desarrolla este caso de estudio se centra en la generación de características de un dataset clásico  
utilizado en muchos artículos, que permite la clasificación multiclase a partir de 150 instancias con 4  
características (SepalLength, SepalWidth, PetalLength y PetalWidth) y una variable «Species» con 3 
clases (Setosa, Versicolor y Virginica), para clasificar las especies de la planta Iris.

Como  este  generador  trabaja  con  un  modelo  CNN,  el  primer  paso  para  optimizar  el  dataset  es  
transformarlo en imágenes. Para ello, se utilizan los  métodos disponibles en la librería TINTOlib de 
Python (ver sección 5.2.1.A), estos métodos en general asignan los datos a posiciones o escalas de 
color  específicas  dentro  de  los  píxeles  de  la  imagen  generada.  La  figura  5.11  muestra  las 
transformaciones a imágenes aplicadas a la primera instancia del conjunto de datos (SepalLength=5,1, 
SepalWidth=3,5,  PetalLength=1,4,  PetalWidth=0,2  y  Species=1)  utilizando  todos  los  métodos 
disponibles en dicha librería. Las transformaciones se presentan de izquierda a derecha y de arriba  
abajo,  en  el  orden  siguiente  de  los  métodos:  TINTO,  SuperTML,  IGTD,  REFINED,  BarGraph, 
DistanceMatrix y Combination.

Figura 5.10: Resultado del experimento 1 utilizando DBScan.



Luego,  se  carga  el  modelo  preentrenado  ResNet-50  de  la  biblioteca  PyTorch 
(https://pytorch.org/vision/stable/models.html), se eliminan las capas de clasificación, y se añade una 
capa  de  aplanamiento  para  vectorizar  la  salida.  Finalmente,  utilizando el  modelo  modificado y  el 
conjunto de datos multidimensional (imágenes) obtenido en el paso anterior, se procede a generar la 
representación  vectorial  de  las  características.  Cabe  destacar  que  este  modelo  genera  2048 
características para cada imagen, debido a que la capa intermedia final del modelo tiene esa cantidad de 
neuronas de salida (ver figura 5.12). Estas características son el producto de las capas convolucionales. 
Las primeras capas convolucionales identifican elementos de bajo nivel, como bordes y texturas, y a 
medida que la información progresa, se detectan características cada vez más complejas y abstractas. 
Así, el resultado es una representación compacta y de alto nivel de la información relevante extraída de 
la entrada original.

5.3.3 Caso 3: Generación de Datos Artificiales

El presente escenario surge ante la necesidad de la Arquitectura de Meta-Aprendizaje de recurrir a la 
generación  de  datos  artificiales.  Esta  necesidad  se  manifiesta  cuando  los  datos  disponibles  son 
insuficientes  para  construir  y  entrenar  eficazmente  un  modelo  de  Aprendizaje  Automático.  A 
continuación, se ofrece un resumen del trabajo descrito en [38], cuyos detalles se encuentran en la 
sección III del artículo presentado en el Anexo 5.D. El contexto en el que se desarrolla este caso de 
estudio se  centra  en la  gestión energética  de redes inteligentes.  En este  caso es  necesario generar  
conjuntos de datos sintéticos para diferentes tareas con las características de la muestra de datos. Para 
ello, se utiliza un modelo VAE, con los siguientes parámetros: i) original_dim: número de neuronas de 

Figura 5.11: Transformaciones de la primera 
instancia del dataset mediante TINTOlib.

Figura 5.12: Características generadas por cada imagen pasada por el modelo CNN-FG.



entrada o dimensión de los datos de entrada, ii) intermediate_dim: número de neuronas en la capa 
oculta intermedia, tiene un valor por defecto: 256. iii) latent_dim: número de neuronas en el espacio 
latente,  valor por defecto:  100. iv) batch_size:  tamaño del  lote,  valor por defecto:  100, v) epochs: 
número de epochs, valor por defecto: 50, vi) epsilon: desviación estándar del tensor, valor por defecto:  
0.5.  Con esta información,  se definen los valores de los parámetros para configurar  el  modelo de 
conocimiento que permitirá generar los datos sintéticos (ver Figura 2 en la sección III del artículo  
presentado en el Anexo 5.D).

Finalmente, se entrena el modelo y se genera el conjunto de datos con N registros utilizando el modelo 
entrenado. La Figura 5.13 muestra parcialmente el conjunto de datos generado utilizando el modelo de 
generación  aprendido,  concretamente,  cuatro  registros  en  los  que  cada  columna  es  una  variable 
diferente.

5.4 Entorno de Meta-Aprendizaje ACODAT

Esta sección presenta un resumen extenso del trabajo presentado en [78], cuyos detalles se encuentran 
en la sección 3 del artículo presentado en el Anexo 5.F. En este trabajo hace uso de la Arquitectura de  
Meta-Aprendizaje  para  la  creación  automática  de  los  modelos  de  conocimiento  para  ACODAT 
(Autonomous Cycles of Data Analysis Tasks). El mecanismo de Meta-Aprendizaje ayuda a ACODAT a 
aprender a adaptarse rápidamente a nuevos escenarios, usando información como las fuentes de datos, 
pero además, las meta-características y los meta-modelos ya definidos.

5.4.1 Sistema Arquitectónico ACODAT 

La figura 5.14 muestra la estructura general del marco propuesto. Esta arquitectura utiliza una base de 
conocimientos que incluye información sobre los modelos de conocimiento almacenados previamente 
en ella, así como los datasets y los hiperparámetros de las técnicas utilizadas para construirlos. Cuando 
es necesario construir un nuevo modelo para un nuevo dataset, el sistema compara la similitud del 
nuevo  dataset  con  los  datasets  existentes  en  el  marco  para  decidir  el  procedimiento  a  seguir.  En 
concreto, las opciones son utilizar un modelo existente si el nuevo dataset es muy similar al utilizado 
para construir el modelo, utilizar solo los parámetros si son algo similares, y construir un nuevo modelo 
o  generar  datos  sintéticos  si  no  son  muy  similares.  Así,  esta  arquitectura  permite  reutilizar 
conocimientos previos e integrar nuevos conocimientos. A continuación se describen brevemente los 
módulos de la arquitectura:

Figura 5.13: Generación de datos sintéticos.



 Management Module: Este módulo gestiona la base de conocimientos, que consta de una tabla 
de  metamodelos,  una  tabla  de  metadatos  y  una  tabla  de  metatécnicas.  Cada  modelo  de 
conocimiento del metamodelo está vinculado a un conjunto de datos (en los metadatos) y a la 
técnica de Aprendizaje Automático (en las Meta-Techniques) utilizada para crearlo. Además, el  
metamodelo  almacena  las  métricas  de  calidad  del  modelo  y  otros  datos  relevantes.  Los 
metadatos contienen detalles sobre los conjuntos de datos, como sus atributos y ubicación. Las  
metatécnicas almacenan información sobre las técnicas de Aprendizaje Automático, incluidos 
los valores óptimos de sus parámetros.

 ACODAT  Module: Cuando  se  recibe  un  nuevo  requisito  para  construir  un  modelo  de 
conocimiento  sobre  un  conjunto  de  datos,  se  activa  este  módulo.  En  primer  lugar,  extrae 
características del dataset entrante. A continuación, compara el nuevo dataset con los datasets  
anteriores que se han utilizado para construir modelos de conocimiento previos, para generar 
una clasificación de similitud.

 Adaptation  Module: El  módulo  de  adaptación  toma  decisiones  basadas  en  el  ranking  de 
similitud.  Basándose  en  este  ranking,  el  módulo  puede  decidir  varias  cosas:  realizar  una 
transferencia  de  modelo  (reutilizarlo)  si  son  muy  similares,  realizar  una  transferencia  de 
parámetros  (reutilizar  los  parámetros  de  las  técnicas)  si  son  algo  similares,  realizar  una 
transferencia de datos (si no son muy similares), o generar datos sintéticos (en estos dos últimos  
casos, si al nuevo conjunto de datos le faltan datos). En todos los casos, se construye un nuevo 
modelo con el nuevo conjunto de datos y se invoca el módulo de gestión.

El módulo ACODAT utiliza un ciclo autonomo para guiar el proceso de optimización de la creación de 
los modelos que se instancian, garantizando la selección de los recursos (modelos, técnicas o datos, 
según el tipo de transferencia que se vaya a realizar) para adaptar el ACODAT. En la sección siguiente,  
se detallará las tareas del módulo ACODAT y su impacto en la arquitectura general.

Figura 5.14: Nueva arquitectura MTL ACODAT.



A. Tareas del módulo ACODAT

El módulo ACODAT se encarga de supervisar la ejecución de los demás módulos del framework, pero 
también, del ACODAT que se está adaptando. Cuando se activa este módulo, se ejecuta un macro-
algoritmo que comienza con la tarea Observación, que supervisa y recopila datos e información del 
sistema o entorno que se está supervisando (información sobre los metadatos, las metatécnicas y los 
metamodelos),  pero  también  sobre  el  ACODAT  que  se  está  supervisando  (tareas  que  se  están 
ejecutando, técnicas y conjuntos de datos utilizados, etc.). A continuación, la tarea Análisis lleva a cabo  
los procesos destinados a interpretar y comprender los datos recogidos para diagnosticar lo que está 
sucediendo en el contexto supervisado, especialmente, sobre las necesidades de adaptación a nivel de 
cada tarea del ACODAT supervisado. Por último, se activa la tarea Decisión, que en este caso implica 
acciones  encaminadas  a  construir  los  modelos  de  aprendizaje  para  el  ACODAT  que  se  está 
instanciando. En este caso, invoca al módulo de adaptación para determinar qué tipo de transferencia 
(de modelos, datos, entre otros) realizar para cada tarea del ACODAT supervisado. Finalmente, este 
módulo, al ser un ciclo autónomo, observa el comportamiento del ACODAT que se está instanciando 
para optimizarlo (los resultados de los modelos de aprendizaje son revisados nuevamente en las tareas 
de Observación y Análisis, iniciando una nueva iteración del ciclo).

5.4.2 Caso de estudio

Esta sección presenta un resumen del trabajo presentado en [78], cuyos detalles se encuentran en la 
sección 4 del  artículo presentado en el  Anexo 5.F.  La arquitectura ACODAT se implementó en la  
empresa  Café  Galavis.  El  ACODAT se  diseñó para  automatizar  el  proceso de  producción de  esta 
empresa y está compuesto por las siguientes tareas:

 Tarea 1.  Cantidad de insumos a transformar:  Analiza diversos aspectos como la evolución 
histórica y los usos de la materia prima para generar el producto (la semilla, en este caso). 
Requiere  un  modelo  de  diagnóstico para  determinar  la  materia  prima  y  la  cantidad  a 
transformar.

 Tarea 2. Calidad de los insumos para el proceso: Mediante esta tarea se establece la calidad de 
estos  insumos,  en  función  de  factores  como  las  prácticas  culturales  y  los  servicios  de 
almacenamiento y transporte. En esta tarea se utiliza un modelo predictivo para determinar esta 
calidad.

 Tarea 3. Método de procesamiento a utilizar: La identificación de los factores relacionados con 
el  método de procesamiento del  café,  como el  secado natural,  el  lavado natural,  el  secado 
mecánico y la selección automática o manual, es la función principal de esta tarea. En esta tarea  
se utiliza para ello un modelo de clasificación.

Este módulo comienza activando sus tareas Observation y Analysis. La tarea Observation recoge datos 
e información de la arquitectura y del ACODAT supervisado. A continuación, la tarea Analysis analiza 
el ACODAT que se va a adaptar, especificando los tipos de tareas de análisis de datos que lo componen 
y las fuentes de datos que se van a utilizar para adaptar el ACODAT, entre otras cosas (véase la Tabla 
5.11, con los resultados de esta tarea). 



Tabla 5.11: Resumen de las tareas del ciclo autónomo supervisado.

Tarea
Tipo de 
Modelo

Tipo de Técnica Dataset a usar

1. Calidad del grano de café Diagnóstico No supervisado
File1.csv:  aroma,  sabor,  acidez,  cuerpo,  uniformidad  y 
otras variables.

2. Disminución del grano 
en el proceso de tostado.

Predictivo Supervisado
File2.csv:  peso  crudo,  peso  tostado,  encogimiento, 
humedad ambiental, densidad, color y otras variables.

3. Método de 
procesamiento del café

Clasificación Supervisado
File1.csv: método de transformación, variedad de semillas, 
aroma,  sabor,  acidez,  cuerpo,  uniformidad,  dulzor  y 
humedad, entre otras variables.

Luego, se ejecuta el módulo Adaptation, que es el encargado de construir los distintos modelos (ver 
sección 4 del Anexo 5.F). En la Tabla 5.12 se detallan los resultados y las métricas de los mejores 
modelos  construidos para  cada tarea (ver  tabla  5.11).  Finalmente,  el  módulo ACODAT verifica  la 
calidad de los nuevos modelos como resultado del módulo Adaptation.

Tabla 5.12: Resultado de los mejores modelos construidos para cada tarea del ciclo autónomo 
supervisado.

Tarea ID_Modelo Algoritmo Métrica Dataset usado

1. Calidad del grano de café 6 DBScan DBCV=0.9 File1.csv

2. Disminución del grano en el 
proceso de tostado.

8
Gradient Boosting 

Regressor
R2=0.9547, MAE=0.04, 

RMSE=0.19
File2.csv

3. Método de procesamiento del café 3
Random Forest 

Classifier

Accuracy=0.9217, 
Recall=0.9217, 

Precision=0.9264, 
F1=0.9224

File1.csv



6 Conclusiones y Trabajos Futuros

6.1 Conclusiones

La  presente  investigación  ha  abordado  la  generación  de  conocimiento  en  Ambientes  Inteligentes 
mediante  la  integración  de  Datos  Enlazados  con  mecanismos  de  Aprendizaje  Automático,  Meta-
Aprendizaje  y  Lógica  Dialéctica.  Se  partió  de  la  necesidad  de  superar  la  falta  de  una  estructura  
semántica  en  la  Web  y  la  complejidad  de  explotar  inteligentemente  el  conocimiento  en  AmI, 
especialmente  en  presencia  de  información  inconsistente  o  ambigua.  La  investigación  se  propuso 
definir una arquitectura computacional que integrara estas capacidades para la generación y explotación 
de conocimiento en AmI.

En primer lugar, se presentó una ampliación del middleware MiSCi con una capa de Datos Enlazados. 
Esta capa, guiada por la metodología MEDAWEDE, permite identificar, describir, conectar, relacionar 
y explotar grandes volúmenes de datos generados por sensores, usuarios y aplicaciones en una ciudad 
inteligente. Esta capa automatiza el enriquecimiento semántico y la explotación de los datos usando el 
paradigma de Datos Enlazados mediante cuatro agentes especializados. El Agente ILDA se encarga de 
la extracción, curación y modelado de la información generada por los propios agentes de MiSCi, 
enriqueciéndola con contexto y ontologías. Así mismo, el Agente  ELDA realiza una función similar 
para datos provenientes de fuentes exteriores como redes sociales. El Agente LDIA se dedica a vincular 
la información enriquecida por ILDA o ELDA con otros conjuntos de datos, para luego publicarlos 
como Datos Enlazados. Finalmente, el Agente LDKA ofrece mecanismos para explotar el conocimiento 
vinculado a estos datos, proporcionando capacidades avanzadas como análisis semántico, manejo de 
ambigüedad, recomendación de información, generación de modelos de Aprendizaje Automático, y 
aprendizaje  de  ontologías.  Además,  se  propuso  una  arquitectura  para  la  generación  automática  y 
enriquecimiento de ontologías emergentes (AOGS). Esta arquitectura permite crear y poblar ontologías 
con conocimiento del dominio y vincularlas con fuentes externas de Datos Enlazados, facilitando la 
construcción de bases de conocimiento semánticamente ricas para contextos específicos. 

En segundo lugar, se desarrolló un Sistema de Recomendación Híbrido (HRS) capaz de integrar lógica 
descriptiva/dialéctica  con  Datos  Enlazados.  Este  sistema  es  capaz  de  resolver  situaciones  con 
información inconsistente o ambigua, lo que representa un avance significativo frente a los sistemas de 
recomendación tradicionales.  Su arquitectura se compone de dos motores de razonamiento y cinco 
gestores de información. Dentro de los motores de razonamiento se encuentra DeLE y DiLE. DeLE 
explota diversas fuentes de Datos Enlazados mediante consultas basadas en tripletas. DiLE responde 
mediante consultas construidas como conjeturas sobre modelos de lógica de primer orden, detectando y 
razonando en estados de ambigüedad o inconsistencia. En cuanto a los gestores de información, VM 
identifica  y  selecciona  los  vocabularios  y  ontologías  necesarios  para  procesar  las  peticiones, 



apoyándose  en  el  QM  para  extraer  nuevo  conocimiento  si  es  preciso.  QM  prepara  y  genera  las 
consultas para DeLE (basadas en tripletas) y para DiLE (basadas en conjeturas). ConM se encarga de 
transformar los datos para permitir el intercambio de información entre los razonadores. RM fusiona y 
filtra  la  información  obtenida  por  los  razonadores,  validando  y  clasificando  las  recomendaciones.  
Finalmente, CM es el responsable de todas las decisiones del HRS, orquestando la invocación de los  
gestores y razonadores, utilizando meta-razonamiento para verificar consultas, identificar conceptos, 
extraer conocimiento y filtrar recomendaciones. Esta integración permite la extracción semántica, la 
verificación y el filtrado de recomendaciones en escenarios complejos como el diagnóstico médico o la 
evaluación de competencias profesionales. Asimismo, se demostró cómo la Lógica Dialéctica permite 
modelar y razonar sobre fenómenos como la vaguedad, declaraciones contingentes sobre el futuro, 
discurso  ficticio,  fallos  de  presuposición  y  razonamiento  contrafáctico  en  el  contexto  de  las 
competencias profesionales, lo que es crucial para comprender el significado real de las competencias  
en perfiles digitales.

Por último lugar, se diseñó una arquitectura de Meta-Aprendizaje para la generación de modelos de 
Aprendizaje Automático basada en Datos Enlazados. El aspecto más innovador es la implementación 
de un Meta-Algoritmo Autónomo que automatiza la construcción de modelos Aprendizaje Automático, 
seleccionando las técnicas y herramientas más apropiadas e integrando capacidades avanzadas. Esta 
arquitectura tiene cuatro módulos especializados que orquestan el proceso completo. El módulo de 
ingeniería de conjuntos de datos (DEM) se encarga de la preparación y optimización de los conjuntos 
de datos.  El módulo de ingeniería de características (FEM) se dedica a la creación y selección de 
características relevantes. Existe un módulo específico para la generación de características con CNNs 
(EAFECNN),  donde  datos  tabulares  se  transforman en  imágenes  que  son insumo para  las  CNNs.  
Finalmente,  el  Módulo  de  ingeniería  de  modelos  (MEM) se  centra  en  el  diseño,  entrenamiento  y 
evaluación de modelos de Aprendizaje Automático. Además, integra de forma inteligente mecanismos 
de aprendizaje por transferencia (de modelos, parámetros y datos) y la generación de datos sintéticos 
(utilizando VAE en la arquitectura SDGS). También, se ilustró su aplicación en la optimización de 
cadenas de producción agroindustrial, demostrando su capacidad para adaptarse rápidamente a nuevos 
escenarios y construir modelos de conocimiento eficientes. 

Esta  arquitectura  fue  extendida  para  la  creación  automática  de  modelos  de  conocimiento  para 
ACODAT, facilitando su adaptación rápida a nuevos escenarios en contextos como la automatización 
de cadenas de producción agroindustrial. Esto se logra mediante la adición de un ciclo autónomo que 
supervisa la ejecución de sus módulos a través de tareas como la Observación (recopila datos del 
sistema y del ACODAT supervisado), el Análisis (interpreta los datos para diagnosticar necesidades de 
adaptación) y la Decisión (construye modelos de aprendizaje y determina el tipo de transferencia de  
conocimiento a realizar, como de modelos o datos).

La validación de las arquitecturas y mecanismos propuestos en esta tesis se ha llevado a cabo mediante 
diversos casos de estudio prácticos y simulados, demostrando su aplicabilidad y robustez en escenarios 
complejos de AmI. En el capítulo 3, la ampliación del middleware MiSCi con una capa de Datos 
Enlazados se ejemplificó en un escenario de ciudad inteligente, abordando la gestión de alarmas y  



recomendaciones  de  servicios.  Asimismo,  la  arquitectura  AOGS  fue  validada  en  el  dominio  del 
COVID-19, evidenciando su capacidad para generar y enriquecer ontologías de forma autónoma. En el  
capítulo 4 se ilustró la utilidad del Sistema de Recomendación Híbrido en el diagnóstico médico y en el 
análisis  de  competencias  profesionales,  donde  la  Lógica  Dialéctica  resolvió  inconsistencias  y 
ambigüedades como la vaguedad y el discurso ficticio. Finalmente, en el capítulo 5 se demostró la 
funcionalidad  de  la  arquitectura  de  Meta-Aprendizaje  y  su  extensión  con  un  Meta-Algoritmo 
Autónomo. Se hizo una prueba general de la extensión en experimentos con un dataset de la empresa 
Café  Galavis,  enfocándose  en  la  automatización  de  su  cadena  de  producción  agroindustria.  Por 
ejemplo, se usó el Meta-Algoritmo para la creación de modelos no supervisados, lo que permitió, por 
ejemplo, clasificar la calidad del café en grupos. Además, se hicieron experimentos con algunas partes 
específicas de la arquitectura de Meta-Aprendizaje. Por ejemplo, se evaluó el proceso de generación de 
datos sintéticos empleando un VAE para completar datasets dispersos, o la generación de características 
para clasificación multiclases. Para esto último, la arquitectura EAFECNN transformó datos tabulares 
en  imágenes,  que  luego  fueron  procesadas  por  CNNs  para  generar  características  relevantes. 
Finalmente,  se hicieron experimentos para la  generación de datos artificiales (o sintéticos)  para la 
gestión energética de redes inteligentes, mediante la arquitectura SDGS, que combina el paradigma de 
Datos Enlazados con la técnica VAE. Estos casos confirman la efectividad de la integración de Datos 
Enlazados,  Aprendizaje  Automático,  Meta-Aprendizaje  y  Lógica  Dialéctica  para  la  generación  y 
explotación de conocimiento en AmI, incluso frente a información inconsistente y ambigua. 

En  general,  esta  tesis  ha  logrado  definir,  especificar  y  validar  arquitecturas  computacionales  que 
explotan el paradigma de Datos Enlazados como eje central para la generación, gestión y explotación 
inteligente  del  conocimiento  en  AmI,  integrando  de  manera  novedosa  y  robustas  técnicas  de 
Aprendizaje  Automático,  Meta-Aprendizaje  y  Lógica  Dialéctica.  Se  han  superado  limitaciones 
existentes en la literatura al abordar la complejidad de la información, incluyendo la inconsistencia y la  
ambigüedad, al automatizar tareas que tradicionalmente requieren intervención humana.

A pesar de la demostrada aplicabilidad y robustez de las arquitecturas propuestas (MiSCi-LDL, AOGS, 
HRS y la arquitectura de Meta-Aprendizaje) en diversos casos de estudio prácticos y simulados en 
escenarios complejos de AmI, la implementación y validación exhaustiva en entornos reales de AmI de 
gran escala y en tiempo real, junto con la optimización de su rendimiento y escalabilidad, representan  
un desafío exigente por evaluar. Si bien el presente trabajo ha sentado bases sólidas para la gestión 
inteligente del conocimiento en presencia de grandes volúmenes de datos, la naturaleza inherentemente 
dinámica, heterogénea y en constante evolución de AmI reales, como ciudades inteligentes, hogares 
conectados o sistemas de salud integrados, demanda una investigación dedicada a probar y optimizar 
propuestas  como estas  en  esos  contextos.  No  se  realizó  una  integración  completa  de  todas  estas 
herramientas  en  un  entorno  real,  lo  cual  tiene  sus  propias  complejidades.  Esto  incluye  el  posible 
aprovechamiento  de  paradigmas  como  la  computación  en  la  niebla  o  el  borde,  los  cuales  serán 
fundamentales para confirmar y potenciar la robustez y adaptabilidad de las soluciones propuestas a 
escenarios dinámicos, asegurando su eficiencia y viabilidad a largo plazo en el espectro completo de  
los AmI del futuro.



6.2 Trabajos Futuros

La investigación realizada abre múltiples vías para trabajos futuros, entre las que se destacan:

 Extensión  de  la  Lógica  Dialéctica  en  otros  contextos: Explorar  la  aplicación  del 
razonamiento dialéctico para abordar contradicciones y ambigüedades en otros dominios, más 
allá del diagnóstico médico y las competencias profesionales, como la gestión de crisis, ya que 
la  naturaleza  dinámica  e  impredecible  de  las  crisis  hace  que  la  capacidad  de  la  Lógica 
Dialéctica para manejar la incertidumbre y las inconsistencias sea una herramienta poderosa 
para la toma de decisiones.

 Optimización del rendimiento de las arquitecturas: Investigar métodos para optimizar el 
rendimiento y la escalabilidad de las arquitecturas propuestas (MiSCi-LDL, AOGS, HRS y la 
arquitectura de Meta-Aprendizaje) en entornos AmI de gran escala y en tiempo real, lo que  
podría implicar el uso de computación en la niebla o el borde. 

 Desarrollo  de  interfaces  y  herramientas  de  usuario: Crear  interfaces  más  intuitivas  y 
herramientas de visualización para que los usuarios finales puedan interactuar con los sistemas 
de  recomendación  y  los  generadores  de  ontologías,  facilitando  la  interpretación  de  las 
decisiones y el conocimiento generado. 

 Abordaje de la explicabilidad en IA híbrida: Profundizar en los métodos de explicabilidad de 
los  modelos  de  Aprendizaje  Automático  y  las  decisiones  del  HRS,  especialmente  en  la 
intersección  de  lógicas  descriptivas/dialécticas  y  técnicas  de  Aprendizaje  Automático,  para 
explicar de forma integral y coherente el razonamiento combinado y las decisiones que emergen 
de esta compleja interacción de paradigmas híbridos, facilitando que los usuarios comprendan 
la razón de las recomendaciones.

 Casos de estudio en entornos reales: Implementar y validar las arquitecturas propuestas en 
casos de estudio más complejos y realistas dentro de AmI, por ejemplo, en sistemas de gestión 
de tráficos o emergencias urbanas, sistemas de asistencia a personas discapacitadas o mayores,  
o  sistemas  de  salud  conectados,  lo  que  permitirá  evaluar  su  robustez  y  adaptabilidad  a 
escenarios dinámicos.
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8 Anexos

8.1 Anexo 2.A: Tecnologías de los Datos Enlazados

Las tecnologías existentes son de suma importancia para implementar los Datos Enlazados, entre los  
elementos  a  considerar  están  los  formatos  de  almacenamiento,  los  lenguajes  de  consulta  y  las 
herramientas de publicación. 

Los formatos de almacenamiento son muy variados, para tener una idea aproximada de la variedad de 
formatos,  si  se  carga  la  URI  que  representa  a  Venezuela  en  DBpedia 
“http://dbpedia.org/page/Venezuela” en el navegador, en la parte superior se observa un menú que 
permite seleccionar el  formato en el que se desea obtener esta información. Entre los formatos de  
intercambio que se muestran están los siguientes: RDF (N-Triples, N3/Turtle y XML), ODATA (Atom, 
JSON), Microdata (JSON, HTML), Embebidos (JSON, Turtle), CXML, CSV y JSON-LD. 

El formato más usado en los Datos Enlazados es N3/Turtle (usado en los ejemplos mostrados), por su 
sencilla  lectura  y  porque  su  serialización  RDF  es  similar  al  lenguaje  de  consulta  SPARQL.  N-
Triples1112131415161718 es un subconjunto de Turtle19 y N320, fue diseñado para ser un formato más simple 
y fácil  de analizar e interpretar por los programas, sin embargo, carece de algunos de los accesos  
directos proporcionados por RDF, haciéndolo tedioso para escribir a mano y leer grandes cantidades de  
datos.. El formato RDF/XML21 es la primera notación usada y estandarizada por el W3C, basado en el 
formato de intercambio XML, su ventaja inicial radica en el soporte a los lenguajes de programación 
con el formato XML, pero presenta un grave problema para su lectura por los humanos, ya que su 
codificación es bastante compleja. Otro formato que ha tenido gran aceptación en los Datos Enlazados 
es el JSON-LD (Javascript Object Notation for Linked Data)22, porque está basado en el formato de 
intercambio JSON, y uno de sus objetivos es ayudar y facilitar la transformación de datos en JSON a 
JSON-LD, ya que existen muchos servicios web que proveen información en JSON. 

11 https://www.w3.org/TR/microdata/
12 https://es.wikipedia.org/wiki/SQL
13 https://www.ics.forth.gr/isl/RDF/RQL/
14 https://www.w3.org/Submission/RDQL/
15 http://jena.apache.org/documentation/fuseki2/index.html
16 http://jena.apache.org
17 http://rdf4j.org
18 https://virtuoso.openlinksw.com
19 http://live.dbpedia.org
20 Formato CONLL, donde NC: sustantivo, SP; preposición y AQ: adjetivo.
21 Lógicas no aristotélicas: Que no cumple los principios de la lógica aristotélica de identidad, no contradicción y del 

tercero excluido [69]. 
22



Las principales críticas hacia los formatos anteriormente comentados, radican en que gran cantidad de 
información ya está disponible en las páginas HTML, y la duplicación en un formato diferente es tanto 
una inversión inicial significativa como una molestia para su mantenimiento. Para solucionar estos 
problemas, se considera integrar etiquetas semánticas o anotaciones semánticas en las webs existentes, 
a través de pequeños cambios en la información y los hipervínculos, haciendo explícito el significado  
de la información a las aplicaciones de Datos Enlazados o buscadores. Entre estos tipos de formatos 
que proveen capacidades embebidas se cuenta con: Microformatos, RDFa y Microdatos.

Los  Microformatos23 se constituyen en la primera iniciativa de agregar información extra al código 
HTML, aprovechando que los intérpretes de este código ignoran cualquier etiqueta desconocida a sus 
especificaciones. Es allí donde se utilizan los atributos y propiedades, para permitir identificar eventos, 
información de contacto, relaciones sociales, direcciones, ubicaciones (coordenadas), etc. El RDFa 24 al 
igual que los microformatos, funciona agregando atributos a las etiquetas; sin embargo, este permite 
definir espacio de nombres de la misma manera que en RDF/XML. Gracias a esto, los escritores no  
están restringidos a solo los vocabularios oficiales, por lo que pueden definir sus propios vocabularios. 
Por último, los  Microdatos25,  o como los llama Google,  Rich Snippets,  son una especificación de 
HTML5 que ayuda a las aplicaciones a entender el contenido que hay en una página. Esto se logra con 
las propiedades añadidas a las etiquetas HTML5, que ofrecen diferentes esquemas según el tipo de  
contenido del que se trate, y los buscadores lo usan para extraer información y facilitar la indexación de 
los datos, ya que permiten contextualizar la información contenida en las páginas web.. A continuación 
se presenta un ejemplo de Venezuela en Microformatos: 

<span class="country">

<a class="url" href="http://dbpedia.org/resource/Venezuela">
<span class="country-name" title="País">Venezuela</span>

</a>
</span>

Los  lenguajes de consultas son fundamentales en el  proceso para encontrar la información que se 
modeló,  concentrándose  en  los  datos  de  manera  abstracta,  ignorando  el  formato  (N-Triples,  N3, 
RDF/XML, etc.) en que fueron almacenadas originalmente las tripletas. Los almacenes o repositorios 
donde se guardan las tripletas, también se les denominan bases de datos semánticas. En las bases de 
datos relacionales se usa un lenguaje de consulta, como el SQL26, para obtener información contenida 
en dichas bases de datos. De igual manera, las bases de datos semánticas necesitan de un estándar que 
permita encontrar los datos o tripletas. Existen muchos lenguajes de consulta RDF, como por ejemplo, 
RQL27,  RDQL28,  SPARQL, entre otros,  y en la  gran mayoría se modelan las consultas de manera 

23 http://purl.org/dc/terms/ https://www.w3.org/TR/n-triples/

24 https://www.w3.org/TR/turtle/
25 https://www.w3.org/TeamSubmission/n3/
26 https://www.w3.org/TR/rdf-syntax-grammar/
27 https://www.w3.org/TR/json-ld/
28 http://microformats.org/



semejante al SQL. El lenguaje de consulta usado en los Datos Enlazados es el SPARQL, ya que sus 
consultas son muy sencillas y potentes, y permite a las organizaciones que se encargan de generar estos  
datos, una forma fácil de compartir y acceder a los datos, ya sea en repositorios locales como remotos.  
Un ejemplo de este tipo de consulta es mostrado a continuación: 

PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX dbpedia-c: <http://es-la.dbpedia.org/resource/Categoría:>
SELECT ?Personas ?Resumen
WHERE {
    ?URIPersonas dcterms:subject dbpedia:Científicos_de_Venezuela .
    ?URIPersonas dbpedia-owl:abstract ?Resumen .
    ?URIPersonas rdfs:label ?Personas .
}

En la palabra  SELECT se escriben las variables que se desean obtener, también se podría usar el 
símbolo  de  asterisco  (*) y  se  obtendrían  todas  las  variables  definidas  en  la  tripleta  que  se  está 
consultando. Luego se usa la palabra WHERE, para indicar de dónde se recogerá la información. En 
esta parte hay que pensar en tripletas. La palabra PREFIX es solo para abreviar las direcciones de cada 
URI usada.

Las  herramientas de publicación son las que permiten almacenar y compartir los Datos Enlazados. 
Estas herramientas también se les denominan motores de consultas. Normalmente, estas herramientas 
implementan SPARQL endpoint, que es un servicio web que permite realizar consultas, por medio del  
protocolo SPARQL (capa que funciona sobre HTTP), en lenguaje SPARQL, sobre un grafo compuesto 
por tripletas RDF [25]. Entre los motores más comunes se encuentran los siguientes: D2RQ, Apache 
Jena Fuseki, RDF4J (Sesame), OpenLink Virtuoso, AllegroGraph, RDFStore, Ontotext GraphDB, entre 
otros. A continuación se detallan algunos de estos motores [16]:

 Apache Jena Fuseki29: es un servidor SPARQL implementado en Java, que puede funcionar 
como un servicio del sistema operativo, como una aplicación web (archivo WAR), o como un 
servidor independiente. Forma parte del conjunto de herramientas ofrecidas por Apache Jena30 
para el desarrollo de aplicaciones para Web Semántica y Datos Enlazados. Entre el conjunto de 
herramientas ofrecidas por Apache Jena están: una API para extraer e insertar datos en los 
grafos RDF, y un soporte para ontologías especificadas en OWL, con diversos razonadores 
como Pellet, Racer y FaCT++.

 Eclipse RDF4J31: es el sucesor del anteriormente conocido proyecto OpenRDF Sesame, que es 
un poderoso framework en Java para el procesamiento de datos RDF, que incluye la creación, 
análisis, almacenamiento, inferencia y consulta sobre dichos Datos Enlazados. Ofrece una API 
que permite  conectar  las  distintas  soluciones líderes  en almacenamiento de RDF, y pone a  
disposición los datos con SPARQL endpoint, para así lograr crear aplicaciones que aprovechen 
el poder de los Datos Enlazados y web semántica.

29 https://www.w3.org/TR/rdfa-syntax/
30 https://www.w3.org/TR/microdata/
31 https://es.wikipedia.org/wiki/SQL



 OpenLink  Virtuoso32: es  una  de  las  soluciones  más  completas  y  moderna  para  el  acceso, 
integración y gestión datos. La arquitectura de OpenLink Virtuoso es un híbrido de Servidor de 
Aplicaciones Web y Sistema de Gestión de Datos, que permite la persistencia de diferentes tipos 
datos: Base de Datos Relacionales (Oracle, SQL Server, MySql, PostgreSql, DB2, Sybase, CA-
Ingres,  Informix,  etc),  RDF,  XML,  texto,  documentos  Web  (con  o  sin  microformatos 
embebidos), Datos Enlazados, datos provenientes de Web Services o Web APIs, entre otros. 
Todo lo anterior, lo logra gracias a su potente característica principal, el componente Sponger, 
que  permite  transformar  datos  no  RDF a  RDF en tiempo de  ejecución.  Sponger  usa  unos 
pequeños paquetes llamados cartridge, que indican como hacer el mapeo de grupos de datos no 
RDF a RDF, e indican todas las configuraciones de seguridad y acceso a las fuentes de donde se 
van a realizar las extracciones. En OpenLink Virtuoso ya vienen integrados una gran cantidad 
de cartridges, pero también ofrece al usuario la posibilidad de construirlos para su formato de 
datos específico.
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8.2 Anexo 3.A: Middleware MiSCi para Ciudades Inteligentes 
extendido con Datos Enlazados





















8.3 Anexo 3.B: Automated Ontology Generator System based on 
Linked data





















8.4 Anexo 3.C: Arquitectura para la Creación y Enriquecimiento 
Automático de Ontologías a partir de Datos Enlazado























8.5 Anexo 4.A: A hybrid recommender system based on 
description/dialetheic logic and linked data













































8.6 Anexo 4.B: Evaluation of digital competence profiles using 
dialetheic logic



























































8.7 Anexo 4.C: Análisis de las contradicciones en las competencias 
profesionales en los textos digitales usando Lógica Dialéctica





























8.8 Anexo 5.A: A meta-learning architecture based on linked data.





















8.9 Anexo 5.B: An Autonomous Meta-Learning Architecture for 
Transfer Learning based on Linked Data

Dos Santos, R., Aguilar. (2025). An Autonomous Meta-Learning Architecture for Transfer Learning 
based on Linked Data. EN REVISTA



8.10 Anexo 5.C: An Explainable Feature Generation Approach for 
Classification Models Using CNNs

Dos Santos, R., Aguilar. (2025). An Explainable Feature Generation Approach for Classification 
Models Using CNNs. EN REVISTA



8.11 Anexo 5.D: A synthetic Data Generator for Smart Grids based on 
the Variational-Autoencoder Technique and Linked Data Paradigm















8.12 Anexo 5.E: A synthetic data generation system based on the 
variational-autoencoder technique and the linked data paradigm













































8.13 Anexo 5.F: Meta-learning Architecture for ACODAT in the Context 
of Agro-Industrial Production Chains of MSMEs

Fuentes, J., Dos Santos, R., Aguilar. Shi, Donghui. (2025). Meta-learning Architecture for ACODAT in 
the Context of Agro-Industrial Production Chains of MSMEs. EN REVISTA
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